• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Milbradt, Peter (2)
  • Schwöppe, Axel (1)

Keywords

  • Finite-Elemente-Methode (2)
  • Approximation (1)
  • Hydrodynamik (1)

Year of publication

  • 2003 (2) (remove)

2 search hits

  • 1 to 2
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Stabilisierte Finite Elemente in der Hydrodynamik (2003)
Milbradt, Peter
Hydro- und morphodynamischen Prozesse in Binnengewässern und im Küstennahbereich erzeugen hochkomplexe Phänomene. Zur Beurteilung der Entwicklung von Küstenzohnen, von Flussbetten sowie von Eingriffen des Menschen in Form von Schutzbauwerken sind geeignete numerische Modellwerkzeuge notwendig. Es wird ein holistischer Modellansatz zur Approximation gekoppelter Seegangs-, Strömungs- und Morphodynamischer Prozesse auf der Basis stabilisierter Finiter Elemente vorgestellt. Der Großteil der Modellgleichungen der Hydro- und Morphodynamik sind Transportgleichungen. Dem Transportcharakter dieser Gleichungen entsprechend wird ein stabilisiertes Finites Element Verfahren auf Dreiecken vorgestellt. Die vorgestellte Approximation entspricht einem streamline upwinding Petrov-Galerkin-Verfahrens für vektorwertige mehrdimensionale Probleme, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar auf andere Problemklassen und basiert ausschließlich auf dem Charakter der zugrundeliegene Das Modell wurde für Seegangs- und Strömungs-Untersuchungen im Jade-Weser-Ästuar an der deutschen Nordseeküste eingesetzt.
Finite Element Approximation auf der Basis geometrischer Zellen (2003)
Milbradt, Peter ; Schwöppe, Axel
Die Methode der Finiten Elemente ist ein numerisches Verfahren zur Interpolation vorgegebener Werte und zur numerischen Approximation von Lösungen stationärer oder instationärer partieller Differentialgleichungen bzw. Systemen partieller Differentialgleichungen. Grundlage dieser Verfahren ist die Formulierung geeigneter Finiter Elemente und Finiter Element Zerlegungen. Finite Elemente besitzen in der Regel eine geometrische Basis bestehend aus Strecken im eindimensionalen, Drei- oder Vierecken im zweidimensionalen und Tetra- oder Hexaedern im dreidimensionalen euklidischen Raum, eine Menge von Freiheitsgraden und eine Basis von Funktionen. Die geometrische Basis eines Finiten Elements wird verallgemeinert als geometrische Zelle formuliert. Diese geschlossene geometrische Formulierung führt zu einer geometrieunabhängigen Definition der Basisfunktionen eines Finiten Elements in den Zellkoordinaten der geometrischen Zelle. Finite Elemente auf der Basis geometrischer Zellen werden als Bestandteile Finiter Element Zerlegungen in Finiten Element Interpolationen und Finiten Element Approximationen verwendet. Die Finiten Element Approximationen werden am Beispiel der 2-dimensionalen Diffusionsgleichung über das Standard-Galerkin-Verfahren ermittelt.
  • 1 to 2
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018