### Refine

#### Document Type

- Conference Proceeding (36)
- Article (16)
- Preprint (1)

#### Institute

#### Keywords

- Angewandte Mathematik (44)
- Strukturmechanik (39)
- Computerunterstütztes Verfahren (11)
- Architektur <Informatik> (10)
- CAD (6)
- Angewandte Informatik (5)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (4)
- Stochastik (4)
- Beton (1)
- Damping (1)
- Dreidimensionales Modell (1)
- Finite-Elemente-Methode (1)
- Hochbau (1)
- Schwingungsdämpfer (1)
- genetic algorithm (1)
- passive control (1)
- tall buildings (1)
- tuned mass dampers (1)

The extended finite element method (XFEM) offers an elegant tool to model material discontinuities and cracks within a regular mesh, so that the element edges do not necessarily coincide with the discontinuities. This allows the modeling of propagating cracks without the requirement to adapt the mesh incrementally. Using a regular mesh offers the advantage, that simple refinement strategies based on the quadtree data structure can be used to refine the mesh in regions, that require a high mesh density. An additional benefit of the XFEM is, that the transmission of cohesive forces through a crack can be modeled in a straightforward way without introducing additional interface elements. Finally different criteria for the determination of the crack propagation angle are investigated and applied to numerical tests of cracked concrete specimens, which are compared with experimental results.

PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS
(2010)

In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.

Damping in Bolted Joints
(2013)

With the help of modern CAE-based simulation processes, it is possible to predict the dynamic behavior of fatigue strength problems in order to improve products of many industries, e.g. the building, the machine construction or the automotive industry. Amongst others, it can be used to improve the acoustic design of automobiles in an early development stage.
Nowadays, the acoustics of automobiles plays a crucial role in the process of vehicle development. Because of the advanced demand of comfort and due to statutory rules the manufacturers are faced with the challenge of optimizing their car’s sound emissions. The optimization includes not only the reduction of noises. Lately with the trend to hybrid and electric cars, it has been shown that vehicles can become too quiet. Thus, the prediction of structural and acoustic properties based on FE-simulations is becoming increasingly important before any experimental prototype is examined. With the state of the art, qualitative comparisons between different implementations are possible. However, an accurate and reliable quantitative prediction is still a challenge.
One aspect in the context of increasing the prediction quality of acoustic (or general oscillating) problems - especially in power-trains of automobiles - is the more accurate implementation of damping in joint structures. While material damping occurs globally and homogenous in a structural system, the damping due to joints is a very local problem, since energy is especially dissipated in the vicinity of joints.
This paper focusses on experimental and numerical studies performed on a single (extracted) screw connection. Starting with experimental studies that are used to identify the underlying physical model of the energy loss, the locally influencing parameters (e.g. the damping factor) should be identified. In contrast to similar research projects, the approach tends to a more local consideration within the joint interface. Tangential stiffness and energy loss within the interface are spatially distributed and interactions between the influencing parameters are regarded. As a result, the damping matrix is no longer proportional to mass or stiffness matrix, since it is composed of the global material damping and the local joint damping. With this new approach, the prediction quality can be increased, since the local distribution of the physical parameters within the joint interface corresponds much closer to the reality.