• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browsen
  • Publish
  • FAQ

Refine

Has Fulltext

  • no (23)
  • yes (5)

Document Type

  • Conference Proceeding (28) (remove)

Author

  • Könke, Carsten (28)
  • Eckardt, Stefan (7)
  • Häfner, Stefan (7)
  • Luther, Torsten (7)
  • Unger, Jörg F. (6)
  • Schwedler, Michael (2)
  • Ahmad, Sofyan (1)
  • Bucher, Christian (1)
  • Hatahet, Tareq (1)
  • Kessel, Marco (1)
+ more

Keywords

  • Angewandte Mathematik (28) (remove)

Year of publication

  • 2006 (7)
  • 2005 (5)
  • 2010 (4)
  • 2004 (3)
  • 2007 (3)
  • 2009 (2)
  • 2014 (2)
  • 2008 (1)
  • 2012 (1)

28 search hits

  • 1 to 28
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Rational Framework for Probability of Collapse in Buildings (2014)
Hatahet, Tareq ; Könke, Carsten
Rational Framework for Probability of Collapse in Buildings
Integrierte Tragwerksanalysen mittels Bauwerksinformationsmodellen und isogeometrischer FE-Methoden (2014)
Schwedler, Michael ; Könke, Carsten
Integrierte Tragwerksanalysen mittels Bauwerksinformationsmodellen und isogeometrischer FE-Methoden
WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES (2012)
Ahmad, Sofyan ; Zabel, Volkmar ; Könke, Carsten
In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.
FINITE ELEMENT ANALYSIS OF TORSION FOR ARBITRARY CROSS-SECTIONS (2010)
Häfner, Stefan ; Vogel, Frank ; Könke, Carsten
The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions.
SPARSE APPROXIMATE COMPUTATION OF SADDLE POINT PROBLEMS ARISING FROM FETI-DP DISCRETIZATION (2010)
Schrader, Kai ; Könke, Carsten
The numerical simulation of microstructure models in 3D requires, due to enormous d.o.f., significant resources of memory as well as parallel computational power. Compared to homogeneous materials, the material hetrogeneity on microscale induced by different material phases demand for adequate computational methods for discretization and solution process of the resulting highly nonlinear problem. To enable an efficient/scalable solution process of the linearized equation systems the heterogeneous FE problem will be described by a FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) discretization. The fundamental FETI-DP equation can be solved by a number of different approaches. In our approach the FETI-DP problem will be reformulated as Saddle Point system, by eliminating the primal and Lagrangian variables. For the reduced Saddle Point system, only defined by interior and dual variables, special Uzawa algorithms can be adapted for iteratively solving the FETI-DP saddle-point equation system (FETI-DP SPE). A conjugate gradient version of the Uzawa algorithm will be shown as well as some numerical tests regarding to FETI-DP discretization of small examples using the presented solution technique. Furthermore the inversion of the interior-dual Schur complement operator can be approximated using different techniques building an adequate preconditioning matrix and therewith leading to substantial gains in computing time efficiency.
PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS (2010)
Unger, Jörg F. ; Könke, Carsten
In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.
ENERGY RELEASE CONTROL FOR NONLINEAR MESOSCALE SIMULATIONS (2010)
Eckardt, Stefan ; Könke, Carsten
In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.
Micro and Meso Scale Analysis of Brittle Grain Boundary Damage in Polycrystalline Materials (2009)
Luther, Torsten ; Könke, Carsten
Micro and Meso Scale Analysis of Brittle Grain Boundary Damage in Polycrystalline Materials
Dynamic Soil-Structure Interaction Models: Theory and Application (2009)
Nasser, Mourad ; Schwedler, Michael ; Wuttke, Frank ; Könke, Carsten ; Schanz, Tom
Dynamic Soil-Structure Interaction Models: Theory and Application
Application of an Atom Continuum Model in Process of Damage Simulation on Multiple Length Scales (2008)
Luther, Torsten ; Könke, Carsten
Application of an Atom Continuum Model in Process of Damage Simulation on Multiple Length Scales
Coupling techniques for heterogeneous multiscale models of concrete (2007)
Eckardt, Stefan ; Könke, Carsten
Coupling techniques for heterogeneous multiscale models of concrete
Multi-scale strategies for simulating brittle fracture in metallic materials (2007)
Luther, Torsten ; Könke, Carsten
Multi-scale strategies for simulating brittle fracture in metallic materials
Neural networks as material models within a multiscale approach (2007)
Unger, Jörg F. ; Könke, Carsten
Neural networks as material models within a multiscale approach
Spatial and temporal multiscale simulations of damage processes for concrete (2006)
Könke, Carsten ; Eckardt, Stefan ; Häfner, Stefan
Spatial and temporal multiscale simulations of damage processes for concrete
Simulation of concrete using the extended finite element method (2006)
Unger, Jörg F. ; Könke, Carsten
Simulation of concrete using the extended finite element method
Analysis of crack initiation and propagation in polyctystalline meso- and microstructures of metal materials (2006)
Luther, Torsten ; Könke, Carsten
Analysis of crack initiation and propagation in polyctystalline meso- and microstructures of metal materials
Multigrid preconditioned conjugate gradient method in the mechanical analysis of heterogeneous solids (2006)
Häfner, Stefan ; Könke, Carsten
Multigrid preconditioned conjugate gradient method in the mechanical analysis of heterogeneous solids
Investigation of crack growth in polycrystalline mesostructures (2006)
Luther, Torsten ; Könke, Carsten
Investigation of crack growth in polycrystalline mesostructures
Damage tolerant design (2006)
Könke, Carsten
Damage tolerant design
Multiphase B-spline finite elements of variable order in the mechanical analysis of heterogeneous solids (2006)
Häfner, Stefan ; Kessel, Marco ; Könke, Carsten
Multiphase B-spline finite elements of variable order in the mechanical analysis of heterogeneous solids
Schädigungs- und Verbundmodellierung für Stahlbetontragwerke (2005)
Könke, Carsten ; Eckardt, Stefan ; Häfner, Stefan ; Luther, Torsten ; Unger, Jörg F.
Schädigungs- und Verbundmodellierung für Stahlbetontragwerke
Numerical Models for the simulation of concrete on the mesoscale (2005)
Unger, Jörg F. ; Eckardt, Stefan ; Könke, Carsten
Numerical Models for the simulation of concrete on the mesoscale
Damage simulation of concrete on the mesoscale (2005)
Eckardt, Stefan ; Könke, Carsten
Damage simulation of concrete on the mesoscale
Micro-Mesoscale Analysis of Crack Initiation and Propagation in Metallic Polycrystals (2005)
Luther, Torsten ; Könke, Carsten
Micro-Mesoscale Analysis of Crack Initiation and Propagation in Metallic Polycrystals
Risk assessment for damage tolerant structures (2005)
Könke, Carsten ; Petryna, Y. ; Singh, Ripudaman
Risk assessment for damage tolerant structures
Adaptation of the natural element method for crack growth simulations (2004)
Unger, Jörg F. ; Most, Thomas ; Bucher, Christian ; Könke, Carsten
Adaptation of the natural element method for crack growth simulations
Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale (2004)
Eckardt, Stefan ; Häfner, Stefan ; Könke, Carsten
Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale
A multigrid finite element method for the mesoscale analysis of concrete (2004)
Häfner, Stefan ; Könke, Carsten
A multigrid finite element method for the mesoscale analysis of concrete
  • 1 to 28
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018