• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Has Fulltext

  • no (18)
  • yes (2)

Author

  • Jiang, Jin-Wu (20) (remove)

Keywords

  • Angewandte Mathematik (18)
  • Strukturmechanik (18)
  • Wärmeleitfähigkeit (2)
  • Bornitrid (1)
  • Finite-Elemente-Methode (1)
  • Mechanische Eigenschaft (1)
  • Nanoribbons, thermal conductivity (1)

Year of publication

  • 2013 (9)
  • 2014 (5)
  • 2012 (3)
  • 2015 (3)

20 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Modelling heat conduction in polycrystalline hexagonal boron-nitride films (2015)
Mortazavi, Bohayra ; Pereira, Luiz Felipe C. ; Jiang, Jin-Wu ; Rabczuk, Timon
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.
Orientation dependent thermal conductance in single-layer MoS 2 (2013)
Jiang, Jin-Wu ; Zhuang, Xiaoying ; Rabczuk, Timon
We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm−1 K−1 in the armchair nanoribbon, and 841.1 Wm−1 K−1 in the zigzag nanoribbon at room temperature. By calculating the Caroli transmission, we disclose the underlying mechanism for this strong orientation dependence to be the fewer phonon transport channels in the armchair MoS2 nanoribbon in the frequency range of [150, 200] cm−1. Through the scaling of the phonon dispersion, we further illustrate that the thermal conductivity calculated for the MoS2 nanoribbon is esentially in consistent with the superior thermal conductivity found for graphene.
Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation (2014)
Jiang, Jin-Wu ; Wang, Bing-Shen ; Rabczuk, Timon
Phonon modes in single-walled molybdenum disulphide nanotubes: lattice dynamics calculation and molecular dynamics simulation
MoS2 nanoresonators: intrinsically better than graphene? (2014)
Jiang, Jin-Wu ; Park, Harold S. ; Rabczuk, Timon
MoS2 nanoresonators: intrinsically better than graphene?
A comparative study of two molecular mechanics models based on harmonic potentials (2013)
Zhao, Jun-Hua ; Wang, L. ; Jiang, Jin-Wu ; Wang, Z. ; Guo, Wanlin ; Rabczuk, Timon
A comparative study of two molecular mechanics models based on harmonic potentials
Superior thermal conductivity and extremely high mechanical strength in polyethylene chains from ab initio calculation (2012)
Jiang, Jin-Wu ; Zhao, Jun-Hua ; Zhou, K. ; Rabczuk, Timon
The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the ab initio calculation and applying the quantum mechanical non-equilibrium Green’s function approach. Specially, there are two main findings from our calculation: (1) the thermal conductivity can reach a high value of 310 Wm−1 K−1 in a 100 nm polyethylene chain at room temperature and the thermal conductivity increases with the length of the chain; (2) the Young’s modulus in the polyethylene chain is as high as 374.5 GPa, and the polyethylene chain can sustain 32.85%±0.05% (ultimate) strain before undergoing structural phase transition into gaseous ethylene.
A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates (2014)
Zhao, Jun-Hua ; Jiang, Jin-Wu ; Jia, Yue ; Guo, Wanlin ; Rabczuk, Timon
Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. The dependence of the cohesive energy on their size, spacing and crossing angles is analyzed. Checking against full atom molecular dynamics calculations and available experimental results shows that the continuum solution has high accuracy. The equilibrium distances between the nanotubes, graphene and substrates with minimum cohesive energy are also provided explicitly. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and substrates, and designing composites and nanoelectromechanical systems.
Mechanical properties of three types of carbon allotropes (2013)
Zhao, Jun-Hua ; Wei, Ning ; Fan, Z. ; Jiang, Jin-Wu ; Rabczuk, Timon
Mechanical properties of three types of carbon allotropes
Size-Sensitive Young’s Modulus of Kinked Silicon Nanowires (2013)
Jiang, Jin-Wu ; Zhao, Jun-Hua ; Rabczuk, Timon
We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.
Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures (2014)
Zhao, Jun-Hua ; Kou, Liangzhi ; Jiang, Jin-Wu ; Rabczuk, Timon
Tension-induced phase transition of single-layer molybdenum disulphide (MoS2) at low temperatures
  • 1 to 10
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018