Refine
Document Type
- Doctoral Thesis (2)
- Master's Thesis (1)
Institute
Keywords
- Architektur (1)
- Arkade (1)
- BIM (1)
- Bauentwurf (1)
- Bauökologie (1)
- Building Information Modelling (1)
- Formfindung (1)
- Kassel / Documenta (1)
- Life Cycle Assessment (1)
- Membran (1)
- Membrankonstruktion (1)
- Nachhaltigkeit (1)
- Optimization (1)
- Parametric Design (1)
- archineering (1)
- form finding (1)
- membrane structure (1)
- parametric design (1)
- parametrisches Entwerfen (1)
- Ökobilanz (1)
The building sector is responsible for a large share of human environmental impacts. Architects and planners are the key players for reducing the environmental impacts of buildings, as they define them to a large extent. Life Cycle Assessment (LCA) allows for the holistic environmental analysis of a building. However, it is currently not employed to improve the environmental performance of buildings during the design process, although the potential for optimization is greatest there. One main reason is the lack of an adequate means of applying LCA in the architectural design process. As such, the main objective of this thesis is to develop a method for environmental building design optimization that is applicable in the design process. The key concept proposed in this thesis is to combine LCA with parametric design, because it proved to have a high potential for design optimization.
The research approach includes the analysis of the characteristics of LCA for buildings and the architectural design stages to identify the research gap, the establishment of a requirement catalogue, the development of a method based on a digital, parametric model, and an evaluation of the method.
An analysis of currently available approaches for LCA of buildings indicates that they are either holistic but very complex or simple but not holistic. Furthermore, none of them provide the opportunity for optimization in the architectural design process, which is the main research gap. The requirements derived from the analysis have been summarized in the form of a catalogue. This catalogue can be used to evaluate both existing approaches and potential methods developed in the future. In this thesis, it served as guideline for the development of the parametric method – Parametric Life Cycle Assessment (PLCA). The unique main feature of PLCA is that embodied and operational environmental impact are calculated together. In combination with the self-contained workflow of the method, this provides the basis for holistic, time-efficient environmental design optimization. The application of PLCA to three examples indicated that all established mandatory requirements are met. In all cases, environmental impact could be significantly reduced. In comparison to conventional approaches, PLCA was shown to be much more time-efficient.
PLCA allows architects to focus on their main task of designing the building, and finally makes LCA practically useful as one of several criteria for design optimization. With PLCA, the building design can be time-efficiently optimized from the beginning of the most influential early design stages, which has not been possible until now. PLCA provides a good starting point for further research. In the future, it could be extended by integrating the social and economic aspects of sustainability.
A parametric method for building design optimization based on Life Cycle Assessment - Appendix
(2016)
The building sector is responsible for a large share of human environmental impacts, over which architects and planners have a major influence. The main objective of this thesis is to develop a method for environmental building design optimization based on Life Cycle Assessment (LCA) that is applicable as part of the design process. The research approach includes a thorough analysis of LCA for buildings in relation to the architectural design stages and the establishment of a requirement catalogue. The key concept of the novel method called Parametric Life Cycle Assessment(PLCA) is to combine LCA with parametric design. The application of this method to three examples shows that building designs can be optimized time-efficiently and holistically from the beginning of the most influential early design stages, an achievement which has not been possible until now.
Dieser Erläuterungsbericht liefert Hintergrundinformationen zur Masterthesis „AR[T]_KADE - documenta center of information and communication“. Die Aufgabenstellung ergibt sich aus der Bearbeitung des von der Universität Kassel ausgelobten studentischen Wettbewerbes „documenta center of information and communication“. Aus der Bearbeitung des Wettbewerbes folgend entsteht ein flexibles, modulares Pavillonsystem, das attraktive Verwendungmöglichkeiten für große und kleine Veranstaltungen auch abseits der documenta bietet. Dieses System wird dimensioniert und mit besonderem Augenmerk auf Materialeffizienz, Nachhaltigkeit und Gewichtseinsparung optimiert. In Rücksprache mit Herstellern werden die entwickelten Lösungen in ihrer Machbarkeit verifiziert. Darüber hinaus werden interdisziplinäre Entwurfsmethoden untersucht und angewandt. Der Erläuterungsbericht gliedert sich in zwei Abschnitte. Der erste beschreibt die architektonische Seite des Entwurfes und bietet Hintergrundinformationen zur städtebaulichen Ausrichtung, der funktionalen Anordnung und der konstruktiven Ausarbeitung. Im zweiten Abschnitt wird das Vorgehen zur Erstellung eines statischen Modells, der Formfindung, der Bemessung und dem Zuschnitt erläutert und die Entwicklung des integrierten digitalen Modells näher dargestellt, mit dem diese innovative, interdisziplinäre Entwurfsmethode erst ermöglicht wird.