### Refine

#### Document Type

- Article (251)
- Conference Proceeding (133)
- Doctoral Thesis (56)
- Master's Thesis (6)
- Preprint (6)
- Habilitation (1)

#### Institute

- Institut für Strukturmechanik (453) (remove)

#### Keywords

- Angewandte Mathematik (305)
- Strukturmechanik (296)
- Stochastik (41)
- Maschinelles Lernen (26)
- Computerunterstütztes Verfahren (22)
- Architektur <Informatik> (17)
- Finite-Elemente-Methode (17)
- Machine learning (15)
- Angewandte Informatik (12)
- CAD (10)

For the safe and efficient operation of dams, frequent monitoring and maintenance are required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues, we propose applying a wave-based scheme for the location and quantification of damages in dams.
To obtain high-resolution “interpretable” images of the damaged regions, we drew inspiration from non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our approach in identifying a series of anomalies in dams by a mixture of reflection and transmission tomography. The results had sufficient robustness, showing the prospects of application in the field of non-destructive testing of dams.

Encapsulation-based self-healing concrete (SHC) is the most promising technique for providing a self-healing mechanism to concrete. This is due to its capacity to heal fractures effectively without human interventions, extending the operational life and lowering maintenance costs. The healing mechanism is created by embedding capsules containing the healing agent inside the concrete. The healing agent will be released once the capsules are fractured and the healing occurs in the vicinity of the damaged part. The healing efficiency of the SHC is still not clear and depends on several factors; in the case of microcapsules SHC the fracture of microcapsules is the most important aspect to release the healing agents and hence heal the cracks. This study contributes to verifying the healing efficiency of SHC and the fracture mechanism of the microcapsules. Extended finite element method (XFEM) is a flexible, and powerful discrete crack method that allows crack propagation without the requirement for re-meshing and has been shown high accuracy for modeling fracture in concrete. In this thesis, a computational fracture modeling approach of Encapsulation-based SHC is proposed based on the XFEM and cohesive surface technique (CS) to study the healing efficiency and the potential of fracture and debonding of the microcapsules or the solidified healing agents from the concrete matrix as well. The concrete matrix and a microcapsule shell both are modeled by the XFEM and combined together by CS. The effects of the healed-crack length, the interfacial fracture properties, and microcapsule size on the load carrying capability and fracture pattern of the SHC have been studied. The obtained results are compared to those obtained from the zero thickness cohesive element approach to demonstrate the significant accuracy and the validity of the proposed simulation. The present fracture simulation is developed to study the influence of the capsular clustering on the fracture mechanism by varying the contact surface area of the CS between the microcapsule shell and the concrete matrix. The proposed fracture simulation is expanded to 3D simulations to validate the 2D computational simulations and to estimate the accuracy difference ratio between 2D and 3D simulations. In addition, a proposed design method is developed to design the size of the microcapsules consideration of a sufficient volume of healing agent to heal the expected crack width. This method is based on the configuration of the unit cell (UC), Representative Volume Element (RVE), Periodic Boundary Conditions (PBC), and associated them to the volume fraction (Vf) and the crack width as variables. The proposed microcapsule design is verified through computational fracture simulations.

The computational costs of newly developed numerical simulation play a critical role in their acceptance within both academic use and industrial employment. Normally, the refinement of a method in the area of interest reduces the computational cost. This is unfortunately not true for most nonlocal simulation, since refinement typically increases the size of the material point neighborhood. Reducing the discretization size while keep- ing the neighborhood size will often require extra consideration. Peridy- namic (PD) is a newly developed numerical method with nonlocal nature. Its straightforward integral form equation of motion allows simulating dy- namic problems without any extra consideration required. The formation of crack and its propagation is known as natural to peridynamic. This means that discontinuity is a result of the simulation and does not demand any post-processing. As with other nonlocal methods, PD is considered an expensive method. The refinement of the nodal spacing while keeping the neighborhood size (i.e., horizon radius) constant, emerges to several nonphysical phenomena.
This research aims to reduce the peridynamic computational and imple- mentation costs. A novel refinement approach is introduced. The pro- posed approach takes advantage of the PD flexibility in choosing the shape of the horizon by introducing multiple domains (with no intersections) to the nodes of the refinement zone. It will be shown that no ghost forces will be created when changing the horizon sizes in both subdomains. The approach is applied to both bond-based and state-based peridynamic and verified for a simple wave propagation refinement problem illustrating the efficiency of the method. Further development of the method for higher dimensions proves to have a direct relationship with the mesh sensitivity of the PD. A method for solving the mesh sensitivity of the PD is intro- duced. The application of the method will be examined by solving a crack propagation problem similar to those reported in the literature.
New software architecture is proposed considering both academic and in- dustrial use. The available simulation tools for employing PD will be collected, and their advantages and drawbacks will be addressed. The challenges of implementing any node base nonlocal methods while max- imizing the software flexibility to further development and modification
will be discussed and addressed. A software named Relation-Based Sim- ulator (RBS) is developed for examining the proposed architecture. The exceptional capabilities of RBS will be explored by simulating three dis- tinguished models. RBS is available publicly and open to further develop- ment. The industrial acceptance of the RBS will be tested by targeting its performance on one Mac and two Linux distributions.

The computational costs of newly developed numerical simulation play a critical role in their acceptance within both academic use and industrial employment. Normally, the refinement of a method in the area of interest reduces the computational cost. This is unfortunately not true for most nonlocal simulation, since refinement typically increases the size of the material point neighborhood. Reducing the discretization size while keep- ing the neighborhood size will often require extra consideration. Peridynamic (PD) is a newly developed numerical method with nonlocal nature. Its straightforward integral form equation of motion allows simulating dynamic problems without any extra consideration required. The formation of crack and its propagation is known as natural to peridynamic. This means that discontinuity is a result of the simulation and does not demand any post-processing. As with other nonlocal methods, PD is considered an expensive method. The refinement of the nodal spacing while keeping the neighborhood size (i.e., horizon radius) constant, emerges to several nonphysical phenomena.
This research aims to reduce the peridynamic computational and imple- mentation costs. A novel refinement approach is introduced. The pro- posed approach takes advantage of the PD flexibility in choosing the shape of the horizon by introducing multiple domains (with no intersections) to the nodes of the refinement zone. It will be shown that no ghost forces will be created when changing the horizon sizes in both subdomains. The approach is applied to both bond-based and state-based peridynamic and verified for a simple wave propagation refinement problem illustrating the efficiency of the method. Further development of the method for higher dimensions proves to have a direct relationship with the mesh sensitivity of the PD. A method for solving the mesh sensitivity of the PD is intro- duced. The application of the method will be examined by solving a crack propagation problem similar to those reported in the literature.
New software architecture is proposed considering both academic and in- dustrial use. The available simulation tools for employing PD will be collected, and their advantages and drawbacks will be addressed. The challenges of implementing any node base nonlocal methods while max- imizing the software flexibility to further development and modification will be discussed and addressed. A software named Relation-Based Sim- ulator (RBS) is developed for examining the proposed architecture. The exceptional capabilities of RBS will be explored by simulating three distinguished models. RBS is available publicly and open to further develop- ment. The industrial acceptance of the RBS will be tested by targeting its performance on one Mac and two Linux distributions.

Finite Element Simulations of dynamically excited structures are mainly influenced by the mass, stiffness, and damping properties of the system, as well as external loads. The prediction quality of dynamic simulations of vibration-sensitive components depends significantly on the use of appropriate damping models. Damping phenomena have a decisive influence on the vibration amplitude and the frequencies of the vibrating structure. However, developing realistic damping models is challenging due to the multiple sources that cause energy dissipation, such as material damping, different types of friction, or various interactions with the environment.
This thesis focuses on thermoelastic damping, which is the main cause of material damping in homogeneous materials. The effect is caused by temperature changes due to mechanical strains. In vibrating structures, temperature gradients arise in adjacent tension and compression areas. Depending on the vibration frequency, they result in heat flows, leading to increased entropy and the irreversible transformation of mechanical energy into thermal energy.
The central objective of this thesis is the development of efficient simulation methods to incorporate thermoelastic damping in finite element analyses based on modal superposition. The thermoelastic loss factor is derived from the structure's mechanical mode shapes and eigenfrequencies. In subsequent analyses that are performed in the time and frequency domain, it is applied as modal damping.
Two approaches are developed to determine the thermoelastic loss in thin-walled plate structures, as well as three-dimensional solid structures. The realistic representation of the dissipation effects is verified by comparing the simulation results with experimentally determined data. Therefore, an experimental setup is developed to measure material damping, excluding other sources of energy dissipation.
The three-dimensional solid approach is based on the determination of the generated entropy and therefore the generated heat per vibration cycle, which is a measure for thermoelastic loss in relation to the total strain energy. For thin plate structures, the amount of bending energy in a modal deformation is calculated and summarized in the so-called Modal Bending Factor (MBF). The highest amount of thermoelastic loss occurs in the state of pure bending. Therefore, the MBF enables a quantitative classification of the mode shapes concerning the thermoelastic damping potential.
The results of the developed simulations are in good agreement with the experimental results and are appropriate to predict thermoelastic loss factors. Both approaches are based on modal superposition with the advantage of a high computational efficiency. Overall, the modeling of thermoelastic damping represents an important component in a comprehensive damping model, which is necessary to perform realistic simulations of vibration processes.

Bolted connections are widely employed in structures like transmission poles, wind turbines, and television (TV) towers. The behaviour of bolted connections is often complex and plays a significant role in the overall dynamic characteristics of the structure. The goal of this work is to conduct a fatigue lifecycle assessment of such a bolted connection block of a 193 m tall TV tower, for which 205 days of real measurement data have been obtained from the installed monitoring devices. Based on the recorded data, the best-fit stochastic wind distribution for 50 years, the decisive wind action, and the locations to carry out the fatigue analysis have been decided. A 3D beam model of the entire tower is developed to extract the nodal forces corresponding to the connection block location under various mean wind speeds, which is later coupled with a detailed complex finite element model of the connection block, with over three million degrees of freedom, for acquiring stress histories on some pre-selected bolts. The random stress histories are analysed using the rainflow counting algorithm (RCA) and the damage is estimated using Palmgren-Miner's damage accumulation law. A modification is proposed to integrate the loading sequence effect into the RCA, which otherwise is ignored, and the differences between the two RCAs are investigated in terms of the accumulated damage.

Determining the earthquake hazard of any settlement is one of the primary studies for reducing earthquake damage. Therefore, earthquake hazard maps used for this purpose must be renewed over time. Turkey Earthquake Hazard Map has been used instead of Turkey Earthquake Zones Map since 2019. A probabilistic seismic hazard was performed by using these last two maps and different attenuation relationships for Bitlis Province (Eastern Turkey) were located in the Lake Van Basin, which has a high seismic risk. The earthquake parameters were determined by considering all districts and neighborhoods in the province. Probabilistic seismic hazard analyses were carried out for these settlements using seismic sources and four different attenuation relationships. The obtained values are compared with the design spectrum stated in the last two earthquake maps. Significant differences exist between the design spectrum obtained according to the different exceedance probabilities. In this study, adaptive pushover analyses of sample-reinforced concrete buildings were performed using the design ground motion level. Structural analyses were carried out using three different design spectra, as given in the last two seismic design codes and the mean spectrum obtained from attenuation relationships. Different design spectra significantly change the target displacements predicted for the performance levels of the buildings.

Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic length scale into the formulation and, in the case of material failure, restore the well-posedness of the underlying boundary value problem or initial boundary value problem. Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows the natural transition from continuum to discontinue and thus allows modeling of discrete cracks without the need to describe and track the crack topology, which has been a major obstacle in traditional discrete crack approaches. This is achieved by replacing the divergence of the Cauchy stress tensor through an integral over so-called bond forces, which account for the interaction of particles. A quasi-continuum approach is then used to calibrate the material parameters of the bond forces, i.e., equating the PD energy with the energy of a continuum. One major issue for the application of PD to general complex problems is that they are limited to fairly simple material behavior and pure mechanical problems based on explicit time integration. PD has been extended to other applications but losing simultaneously its simplicity and ease in modeling material failure. Furthermore, conventional PD suffers from instability and hourglass modes that require stabilization. It also requires the use of constant horizon sizes, which drastically reduces its computational efficiency. The latter issue was resolved by the so-called dual-horizon peridynamics (DH-PD) formulation and the introduction of the duality of horizons.
Within the nonlocal operator method (NOM), the concept of nonlocality is further extended and can be considered a generalization of DH-PD. Combined with the energy functionals of various physical models, the nonlocal forms based on the dual-support concept can be derived. In addition, the variation of the energy functional allows implicit formulations of the nonlocal theory. While traditional integral equations are formulated in an integral domain, the dual-support approaches are based on dual integral domains. One prominent feature of NOM is its compatibility with variational and weighted residual methods. The NOM yields a direct numerical implementation based on the weighted residual method for many physical problems without the need for shape functions. Only the definition of the energy or boundary value problem is needed to drastically facilitate the implementation. The nonlocal operator plays an equivalent role to the derivatives of the shape functions in meshless methods and finite element methods (FEM). Based on the variational principle, the residual and the tangent stiffness matrix can be obtained with ease by a series of matrix multiplications. In addition, NOM can be used to derive many nonlocal models in strong form.
The principal contributions of this dissertation are the implementation and application of NOM, and also the development of approaches for dealing with fractures within the NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation are as follows:
-The first/higher-order implicit NOM and explicit NOM, including a detailed description of the implementation, are presented. The NOM is based on so-called support, dual-support, nonlocal operators, and an operate energy functional ensuring stability. The nonlocal operator is a generalization of the conventional differential operators. Combining with the method of weighted residuals and variational principles, NOM establishes the residual and tangent stiffness matrix of operate energy functional through some simple matrix without the need of shape functions as in other classical computational methods such as FEM. NOM only requires the definition of the energy drastically simplifying its implementation. For the sake of conciseness, the implementation in this chapter is focused on linear elastic solids only, though the NOM can handle more complex nonlinear problems. An explicit nonlocal operator method for the dynamic analysis of elasticity solid problems is also presented. The explicit NOM avoids the calculation of the tangent stiffness matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-velocity algorithm. The NOM can be very flexible and efficient for solving partial differential equations (PDEs). It's also quite easy for readers to use the NOM and extend it to solve other complicated physical phenomena described by one or a set of PDEs. Several numerical examples are presented to show the capabilities of this method.
-A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is proposed. The nonlocal Hessian operator is derived from a second-order Taylor series expansion. NOM is higher-order continuous, which is exploited for thin plate analysis that requires $C^1$ continuity. The nonlocal dynamic governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The Verlet-velocity algorithm is used for time discretization. After confirming the accuracy of the nonlocal Hessian operator, several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.
-A nonlocal fracture modeling is developed and applied to the simulation of quasi-static and dynamic fractures using the NOM. The phase field's nonlocal weak and associated strong forms are derived from a variational principle. The NOM requires only the definition of energy. We present both a nonlocal implicit phase field model and a nonlocal explicit phase field model for fracture; the first approach is better suited for quasi-static fracture problems, while the key application of the latter one is dynamic fracture. To demonstrate the performance of the underlying approach, several benchmark examples for quasi-static and dynamic fracture are solved.

The aim of this study is controlling of spurious oscillations developing around discontinuous solutions of both linear and non-linear wave equations or hyperbolic partial differential equations (PDEs). The equations include both first-order and second-order (wave) hyperbolic systems. In these systems even smooth initial conditions, or smoothly varying source (load) terms could lead to discontinuous propagating solutions (fronts). For the first order hyperbolic PDEs, the concept of central high resolution schemes is integrated with the multiresolution-based adaptation to capture properly both discontinuous propagating fronts and effects of fine-scale responses on those of larger scales in the multiscale manner. This integration leads to using central high resolution schemes on non-uniform grids; however, such simulation is unstable, as the central schemes are originally developed to work properly on uniform cells/grids. Hence, the main concern is stable collaboration of central schemes and multiresoltion-based cell adapters. Regarding central schemes, the considered approaches are: 1) Second order central and central-upwind schemes; 2) Third order central schemes; 3) Third and fourth order central weighted non-oscillatory schemes (central-WENO or CWENO); 4) Piece-wise parabolic methods (PPMs) obtained with two different local stencils. For these methods, corresponding (nonlinear) stability conditions are studied and modified, as well. Based on these stability conditions several limiters are modified/developed as follows: 1) Several second-order limiters with total variation diminishing (TVD) feature, 2) Second-order uniformly high order accurate non-oscillatory (UNO) limiters, 3) Two third-order nonlinear scaling limiters, 4) Two new limiters for PPMs. Numerical results show that adaptive solvers lead to cost-effective computations (e.g., in some 1-D problems, number of adapted grid points are less than 200 points during simulations, while in the uniform-grid case, to have the same accuracy, using of 2049 points is essential). Also, in some cases, it is confirmed that fine scale responses have considerable effects on higher scales.
In numerical simulation of nonlinear first order hyperbolic systems, the two main concerns are: convergence and uniqueness. The former is important due to developing of the spurious oscillations, the numerical dispersion and the numerical dissipation. Convergence in a numerical solution does not guarantee that it is the physical/real one (the uniqueness feature). Indeed, a nonlinear systems can converge to several numerical results (which mathematically all of them are true). In this work, the convergence and uniqueness are directly studied on non-uniform grids/cells by the concepts of local numerical truncation error and numerical entropy production, respectively. Also, both of these concepts have been used for cell/grid adaptations. So, the performance of these concepts is also compared by the multiresolution-based method. Several 1-D and 2-D numerical examples are examined to confirm the efficiency of the adaptive solver. Examples involve problems with convex and non-convex fluxes. In the latter case, due to developing of complex waves, proper capturing of real answers needs more attention. For this purpose, using of method-adaptation seems to be essential (in parallel to the cell/grid adaptation). This new type of adaptation is also performed in the framework of the multiresolution analysis.
Regarding second order hyperbolic PDEs (mechanical waves), the regularization concept is used to cure artificial (numerical) oscillation effects, especially for high-gradient or discontinuous solutions. There, oscillations are removed by the regularization concept acting as a post-processor. Simulations will be performed directly on the second-order form of wave equations. It should be mentioned that it is possible to rewrite second order wave equations as a system of first-order waves, and then simulated the new system by high resolution schemes. However, this approach ends to increasing of variable numbers (especially for 3D problems).
The numerical discretization is performed by the compact finite difference (FD) formulation with desire feature; e.g., methods with spectral-like or optimized-error properties. These FD methods are developed to handle high frequency waves (such as waves near earthquake sources). The performance of several regularization approaches is studied (both theoretically and numerically); at last, a proper regularization approach controlling the Gibbs phenomenon is recommended.
At the end, some numerical results are provided to confirm efficiency of numerical solvers enhanced by the regularization concept. In this part, shock-like responses due to local and abrupt changing of physical properties, and also stress wave propagation in stochastic-like domains are studied.

One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called “forward codes” for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves.