### Refine

#### Document Type

- Conference Proceeding (133) (remove)

#### Institute

- Institut für Strukturmechanik (133) (remove)

#### Keywords

- Angewandte Mathematik (122)
- Strukturmechanik (110)
- Computerunterstütztes Verfahren (22)
- Architektur <Informatik> (17)
- Angewandte Informatik (12)
- CAD (10)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (7)
- Building Information Modeling (4)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (3)
- Damping (1)

From the design experiences of arch dams in the past, it has significant practical value to carry out the shape optimization of arch dams, which can fully make use of material characteristics and reduce the cost of constructions. Suitable variables need to be chosen to formulate the objective function, e.g. to minimize the total volume of the arch dam. Additionally a series of constraints are derived and a reasonable and convenient penalty function has been formed, which can easily enforce the characteristics of constraints and optimal design. For the optimization method, a Genetic Algorithm is adopted to perform a global search. Simultaneously, ANSYS is used to do the mechanical analysis under the coupling of thermal and hydraulic loads. One of the constraints of the newly designed dam is to fulfill requirements on the structural safety. Therefore, a reliability analysis is applied to offer a good decision supporting for matters concerning predictions of both safety and service life of the arch dam. By this, the key factors which would influence the stability and safety of arch dam significantly can be acquired, and supply a good way to take preventive measures to prolong ate the service life of an arch dam and enhances the safety of structure.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.

A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!

Damping in Bolted Joints
(2013)

With the help of modern CAE-based simulation processes, it is possible to predict the dynamic behavior of fatigue strength problems in order to improve products of many industries, e.g. the building, the machine construction or the automotive industry. Amongst others, it can be used to improve the acoustic design of automobiles in an early development stage.
Nowadays, the acoustics of automobiles plays a crucial role in the process of vehicle development. Because of the advanced demand of comfort and due to statutory rules the manufacturers are faced with the challenge of optimizing their car’s sound emissions. The optimization includes not only the reduction of noises. Lately with the trend to hybrid and electric cars, it has been shown that vehicles can become too quiet. Thus, the prediction of structural and acoustic properties based on FE-simulations is becoming increasingly important before any experimental prototype is examined. With the state of the art, qualitative comparisons between different implementations are possible. However, an accurate and reliable quantitative prediction is still a challenge.
One aspect in the context of increasing the prediction quality of acoustic (or general oscillating) problems - especially in power-trains of automobiles - is the more accurate implementation of damping in joint structures. While material damping occurs globally and homogenous in a structural system, the damping due to joints is a very local problem, since energy is especially dissipated in the vicinity of joints.
This paper focusses on experimental and numerical studies performed on a single (extracted) screw connection. Starting with experimental studies that are used to identify the underlying physical model of the energy loss, the locally influencing parameters (e.g. the damping factor) should be identified. In contrast to similar research projects, the approach tends to a more local consideration within the joint interface. Tangential stiffness and energy loss within the interface are spatially distributed and interactions between the influencing parameters are regarded. As a result, the damping matrix is no longer proportional to mass or stiffness matrix, since it is composed of the global material damping and the local joint damping. With this new approach, the prediction quality can be increased, since the local distribution of the physical parameters within the joint interface corresponds much closer to the reality.

In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.

The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions.

The numerical simulation of microstructure models in 3D requires, due to enormous d.o.f., significant resources of memory as well as parallel computational power. Compared to homogeneous materials, the material hetrogeneity on microscale induced by different material phases demand for adequate computational methods for discretization and solution process of the resulting highly nonlinear problem. To enable an efficient/scalable solution process of the linearized equation systems the heterogeneous FE problem will be described by a FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) discretization. The fundamental FETI-DP equation can be solved by a number of different approaches. In our approach the FETI-DP problem will be reformulated as Saddle Point system, by eliminating the primal and Lagrangian variables. For the reduced Saddle Point system, only defined by interior and dual variables, special Uzawa algorithms can be adapted for iteratively solving the FETI-DP saddle-point equation system (FETI-DP SPE). A conjugate gradient version of the Uzawa algorithm will be shown as well as some numerical tests regarding to FETI-DP discretization of small examples using the presented solution technique. Furthermore the inversion of the interior-dual Schur complement operator can be approximated using different techniques building an adequate preconditioning matrix and therewith leading to substantial gains in computing time efficiency.

PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS
(2010)

In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.

In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.

In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE
(2010)

This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.

Isogeometric finite element analysis has become a powerful alternative to standard finite elements due to their flexibility in handling complex geometries. One major drawback of NURBS based isogeometric finite elements is their less effectiveness of local refinement. In this study, we present an alternative to NURBS based isogeometric finite elements that allow for local refinement. The idea is based on polynomial splines and exploits the flexibility of T-meshes for local refinement. The shape functions satisfy important properties such as non-negativity, local support and partition of unity. We will demonstrate the efficiency of the proposed method by two numerical examples.

Major problems of applying selective sensitivity to system identification are requirement of precise knowledge about the system parameters and realization of the required system of forces. This work presents a procedure which is able to deriving selectively sensitive excitation by iterative experiments. The first step is to determine the selectively sensitive displacement and selectively sensitive force patterns. These values are obtained by introducing the prior information of system parameters into an optimization which minimizes the sensitivities of the structure response with respect to the unselected parameters while keeping the sensitivities with respect to the selected parameters as a constant. In a second step the force pattern is used to derive dynamic loads on the tested structure and measurements are carried out. An automatic control ensures the required excitation forces. In a third step, measured outputs are employed to update the prior information. The strategy is to minimize the difference between a predicted displacement response, formulated as function of the unknown parameters and the measured displacements, and the selectively sensitive displacement calculated in the first step. With the updated values of the parameters a re-analysis of selective sensitivity is performed and the experiment is repeated until the displacement response of the model and the actual structure are conformed. As an illustration a simply supported beam made of steel, vibrated by harmonic excitation is investigated, thereby demonstrating that the adaptive excitation can be obtained efficiently.

The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares approximation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this method the obtained shape functions do not fulfill the interpolation condition, which causes additional numerical effort for the imposition of the essential boundary conditions. The application of a singular weighting function, which leads to singular coefficient matrices at the nodes, can solve this problem, but requires a very careful placement of the integration points. Special procedures for the handling of such singular matrices were proposed in literature, which require additional numerical effort. In this paper a non-singular weighting function is presented, which leads to an exact fulfillment of the interpolation condition. This weighting function leads to regular values of the weights and the coefficient matrices in the whole interpolation domain even at the nodes. Furthermore this function gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than classical weighting function types. Nevertheless, for practical applications the results are similar as these obtained with the regularized weighting type presented by the authors in previous publications. Finally a new concept will be presented, which enables an efficient analysis of systems with strongly varying node density. In this concept the nodal influence domains are adapted depending on the nodal configuration by interpolating the influence radius for each direction from the distances to the natural neighbor nodes. This approach requires a Voronoi diagram of the domain, which is available in this study since Delaunay triangles are used as integration background cells. In the numerical examples it will be shown, that this method leads to a more uniform and reduced number of influencing nodes for systems with varying node density than the classical circular influence domains, which means that the small additional numerical effort for interpolating the influence radius leads to remarkable reduction of the total numerical cost in a linear analysis while obtaining similar results. For nonlinear calculations this advantage would be even more significant.