### Refine

#### Institute

#### Keywords

- Angewandte Informatik (75) (remove)

#### Year of publication

- 2010 (75) (remove)

From 7 till 9 July 2009, the 18th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering is going to take place at the Bauhaus University Weimar. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences to report on their results in research, development and practice and to discuss. The conference offers several topics. Plenary lectures and thematic sessions will take place under the chairmanship of the mentioned colleagues.
We invite architects, civil engineers, designers, computer scientists, engineers, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

We give a sufficient and a necessary condition for an analytic function "f" on the unit disk "D" with Hadamard gap to belong to a class of weighted logarithmic Bloch space as well as to the corresponding little weighted logarithmic Bloch space under some conditions posed on the defined weight function. Also, we study the relations between the class of weighted logarithmic Bloch functions and some other classes of analytic functions by the help of analytic functions in the Hadamard gap class.

We investigate aspects of tram-network section reliability, which operates as a part of the model of whole city tram-network reliability. Here, one of the main points of interest is the character of the chronological development of the disturbances (namely the differences between time of departure provided in schedule and real time of departure) on subsequent sections during tram line operation. These developments were observed in comprehensive measurements done in Krakow, during one of the main transportation nodes (Rondo Mogilskie) rebuilding. All taken building activities cause big disturbances in tram lines operation with effects extended to neighboring sections. In a second part, the stochastic character of section running time will be analyzed more detailed. There will be taken into consideration sections with only one beginning stop and also with two or three beginning stops located at different streets at an intersection. Possibility of adding results from sections with two beginning stops to one set will be checked with suitable statistical tests which are used to compare the means of the two samples. Section running time may depend on the value of gap between two following trams and from the value of deviation from schedule. This dependence will be described by a multi regression formula. The main measurements were done in the city center of Krakow in two stages: before and after big changes in tramway infrastructure.

From passenger’s perspective, punctuality is one of the most important features of tram route operation. We present a stochastic simulation model with special focus on determining important factors of influence. The statistical analysis bases on large samples (sample size is nearly 2000) accumulated from comprehensive measurements on eight tram routes in Cracow. For the simulation, we are not only interested in average values but also in stochastic characteristics like the variance and other properties of the distribution. A realization of trams operations is assumed to be a sequence of running times between successive stops and times spent by tram at the stops divided in passengers alighting and boarding times and times waiting for possibility of departure . The running time depends on the kind of track separation including the priorities in traffic lights, the length of the section and the number of intersections. For every type of section, a linear mixed regression model describes the average running time and its variance as functions of the length of the section and the number of intersections. The regression coefficients are estimated by the iterative re-weighted least square method. Alighting and boarding time mainly depends on type of vehicle, number of passengers alighting and boarding and occupancy of vehicle. For the distribution of the time waiting for possibility of departure suitable distributions like Gamma distribution and Lognormal distribution are fitted.

Models in the context of engineering can be classified in process based and data based models. Whereas the process based model describes the problem by an explicit formulation, the data based model is often used, where no such mapping can be found due to the high complexity of the problem. Artificial Neuronal Networks (ANN) is a data based model, which is able to “learn“ a mapping from a set of training patterns. This paper deals with the application of ANN in time dependent bathymetric models. A bathymetric model is a geometric representation of the sea bed. Typically, a bathymetry is been measured and afterwards described by a finite set of measured data. Measuring at different time steps leads to a time dependent bathymetric model. To obtain a continuous surface, the measured data has to be interpolated by some interpolation method. Unlike the explicitly given interpolation methods, the presented time dependent bathymetric model using an ANN trains the approximated surface in space and time in an implicit way. The ANN is trained by topographic measured data, which consists of the location (x,y) and time t. In other words the ANN is trained to reproduce the mapping h = f(x,y,t) and afterwards it is able to approximate the topographic height for a given location and date. In a further step, this model is extended to take meteorological parameters into account. This leads to a model of more predictive character.

In this paper the influence of changes in the mean wind velocity, the wind profile power-law coefficient, the drag coefficient of the terrain and the structural stiffness are investigated on different complex structural models. This paper gives a short introduction to wind profile models and to the approach by Davenport A. G. to compute the structural reaction of wind induced vibrations. Firstly with help of a simple example (a skyscraper) this approach is shown. Using this simple example gives the reader the possibility to study the variance differences when changing one of the above mentioned parameters on this very easy example and see the influence of different complex structural models on the result. Furthermore an approach for estimation of the needed discretization level is given. With the help of this knowledge the structural model design methodology can be base on deeper understanding of the different behavior of the single models.

Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centered around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator called the Dirac operator, which factorizes the Laplacian. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions, called Hermitean (or h-) monogenic functions, of two Hermitean Dirac operators which are invariant under the action of the unitary group. In Euclidean Clifford analysis, the Clifford-Cauchy integral formula has proven to be a corner stone of the function theory, as is the case for the traditional Cauchy formula for holomorphic functions in the complex plane. Previously, a Hermitean Clifford-Cauchy integral formula has been established by means of a matrix approach. This formula reduces to the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables when taking functions with values in an appropriate part of complex spinor space. This means that the theory of Hermitean monogenic functions should encompass also other results of several variable complex analysis as special cases. At present we will elaborate further on the obtained results and refine them, considering fundamental solutions, Borel-Pompeiu representations and the Teoderescu inversion, each of them being developed at different levels, including the global level, handling vector variables, vector differential operators and the Clifford geometric product as well as the blade level were variables and differential operators act by means of the dot and wedge products. A rich world of results reveals itself, indeed including well-known formulae from the theory of several complex variables.

In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.

A UNIFIED APPROACH FOR THE TREATMENT OF SOME HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS ON SPHERES
(2010)

Using Clifford analysis methods, we provide a unified approach to obtain explicit solutions of some partial differential equations combining the n-dimensional Dirac and Euler operators, including generalizations of the classical time-harmonic Maxwell equations. The obtained regular solutions show strong connections between hypergeometric functions and homogeneous polynomials in the kernel of the Dirac operator.

The application of a recent method using formal power series is proposed. It is based on a new representation for solutions of Sturm-Liouville equations. This method is used to calculate the transmittance and reflectance coefficients of finite inhomogeneous layers with high accuracy and efficiency. Tailoring the refraction index profile defining the inhomogeneous media it is possible to develop very important applications such as optical filters. A number of profiles were evaluated and then some of them selected in order to perform an improvement of their characteristics via the modification of their profiles.

MICROPLANE MODEL WITH INITIAL AND DAMAGE-INDUCED ANISOTROPY APPLIED TO TEXTILE-REINFORCED CONCRETE
(2010)

The presented material model reproduces the anisotropic characteristics of textile reinforced concrete in a smeared manner. This includes both the initial anisotropy introduced by the textile reinforcement, as well as the anisotropic damage evolution reflecting fine patterns of crack bridges. The model is based on the microplane approach. The direction-dependent representation of the material structure into oriented microplanes provides a flexible way to introduce the initial anisotropy. The microplanes oriented in a yarn direction are associated with modified damage laws that reflect the tension-stiffening effect due to the multiple cracking of the matrix along the yarn.

In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus.

In the past, several types of Fourier transforms in Clifford analysis have been studied. In this paper, first an overview of these different transforms is given. Next, a new equation in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of generalized Fourier transforms. Two solutions of this equation are studied in more detail, namely a vector-valued solution and a bivector-valued solution, as well as the associated integral transforms.

THE FOURIER-BESSEL TRANSFORM
(2010)

In this paper we devise a new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced earlier. We show that this new integral transform satisfies operational formulae which are similar to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consisting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform.

This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation.

NONZONAL WAVELETS ON S^N
(2010)

In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on $S^n$, which we obtain from the approximate identity of Gauss-Weierstraß.

In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.

SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS
(2010)

After mixing of concrete, the hardening starts by an exothermic chemical reaction known as hydration. As the reaction rate depends on the temperature the time in the description of the hydration is replaced by the maturity which is defined as an integral over a certain function depending on the temperature. The temperature distribution is governed by the heat equation with a right hand side depending on the maturity and the temperature itself. We compare of the performance of different time integration schemes of higher order with an automatic time step control. The simulation of the heat distribution is of importance as the development of mechanical properties is driven by the hydration. During this process it is possible that the tensile stresses exceed the tensile strength and cracks occur. The goal is to produce cheap concrete without cracks. Simple crack-criterions use only temperature differences, more involved ones are based on thermal stresses. If the criterion predicts cracks some changes in the input data are needed. This can be interpreted as optimization. The final goal will be to adopt model based optimization (in contrast to simulation based optimization) to the problem of the hydration of young concrete and the avoidance of cracks. The first step is the simulation of the hydration, which we focus in this paper.

An introduction is given to Clifford Analysis over pseudo-Euclidean space of arbitrary signature, called for short Ultrahyperbolic Clifford Analysis (UCA). UCA is regarded as a function theory of Clifford-valued functions, satisfying a first order partial differential equation involving a vector-valued differential operator, called a Dirac operator. The formulation of UCA presented here pays special attention to its geometrical setting. This permits to identify tensors which qualify as geometrically invariant Dirac operators and to take a position on the naturalness of contravariant and covariant versions of such a theory. In addition, a formal method is described to construct the general solution to the aforementioned equation in the context of covariant UCA.

Buildings can be divided into various types and described by a huge number of parameters. Within the life cycle of a building, especially during the design and construction phases, a lot of engineers with different points of view, proprietary applications and data formats are involved. The collaboration of all participating engineers is characterised by a high amount of communication. Due to these aspects, a homogeneous building model for all engineers is not feasible. The status quo of civil engineering is the segmentation of the complete model into partial models. Currently, the interdependencies of these partial models are not in the focus of available engineering solutions. This paper addresses the problem of coupling partial models in civil engineering. According to the state-of-the-art, applications and partial models are formulated by the object-oriented method. Although this method solves basic communication problems like subclass coupling directly it was found that many relevant coupling problems remain to be solved. Therefore, it is necessary to analyse and classify the relevant coupling types in building modelling. Coupling in computer science refers to the relationship between modules and their mutual interaction and can be divided into different coupling types. The coupling types differ on the degree by which the coupled modules rely upon each other. This is exemplified by a general reference example from civil engineering. A uniform formulation of coupling patterns is described analogously to design patterns, which are a common methodology in software engineering. Design patterns are templates for describing a general reusable solution to a commonly occurring problem. A template is independent of the programming language and the operating system. These coupling patterns are selected according to the specific problems of building modelling. A specific meta-model for coupling problems in civil engineering is introduced. In our meta-model the coupling patterns are a semantic description of a specific coupling design.

Reducing energy consumption is one of the major challenges for present day and will continue for future generations. The emerging EU directives relating to energy (EU EPBD and the EU Directive on Emissions Trading) now place demands on building owners to rate the energy performance of their buildings for efficient energy management. Moreover European Legislation (Directive 2006/32/EC) requires Facility Managers to reduce building energy consumption and operational costs. Currently sophisticated building services systems are available integrating off-the-shelf building management components. However this ad-hoc combination presents many difficulties to building owners in the management and upgrade of these systems. This paper addresses the need for integration concepts, holistic monitoring and analysis methodologies, life-cycle oriented decision support and sophisticated control strategies through the seamless integration of people, ICT-devices and computational resources via introducing the newly developed integrated system architecture. The first concept was applied to a residential building and the results were elaborated to improve current building conditions.

In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method.

Using a quaternionic reformulation of the electrical impedance equation, we consider a two-dimensional separable-variables conductivity function and, posing two different techniques, we obtain a special class of Vekua equation, whose general solution can be approach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit Bers generating sequence.

Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail.

In this paper three different formulations of a Bernoulli type free boundary problem are discussed. By analyzing the shape Hessian in case of matching data it is distinguished between well-posed and ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for discretizing the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second order shape optimization algorithms are obtained.

Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed.

The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions.

NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE
(2010)

This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.

The evident advances of the computational power of the digital computers enable the modeling of the total system of structures. Such modeling demands compatible representations of the couplings of different structural subsystems. Therefore, models of dynamic interaction between the vehicle and the bridge and models of a bridge bearing, a coupling element between the bridge's superstructure and substructure, are of interest and discussed within this paper. The vehicle-bridge interaction may be described as a function connecting two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect both systems, such as the frequency content of the bridge and the vehicle. Whereas the bridge bearings are elements used specifically to couple, in such elements the deformation and the transferred loads are used in characterizing the coupling The nature of these couplings and their influence on the bridge response is different. However, the need to assess the amount of dynamic response transferred by or within these couplings is a common argument.

Tests on Polymer Modified Cement Concrete (PCC) have shown significant large creep deformation. The reasons for that as well as additional material phenomena are explained in the following paper. Existing creep models developed for standard concrete are studied to determine the time-dependent deformations of PCC. These models are: model B3 by Bažant and Bajewa, the models according to Model Code 90 and ACI 209 as well as model GL2000 by Gardner and Lockman. The calculated creep strains are compared to existing experimental data of PCC and the differences are pointed out. Furthermore, an optimization of the model parameters is performed to fit the models to the experimental data to achieve a better model prognosis.

In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building’s requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access.

Geotechnical constructions are sophisticated structures due to the non-linear soil behaviour and the complex soil-structure interaction, which entails great exigencies on the liable engineer during the design process. The process can be schematised as a difficult and, depending on the opportunities and skills of the processor more or less innovative, creative and heuristic search for one or a multiple of defined objectives under given boundary conditions. Wholistic approaches including numerical optimisation which support the constructing engineer in this task do not currently exist. Abstract problem formulation is not state of the art; commonly parameter studies are bounded by computational effort. Thereby potential regarding cost effectiveness, construction time, load capacity and/or serviceability are often used insufficiently. This paper describes systematic approaches for comprehensive optimisation of selected geotechnical constructions like combined pile raft foundations and quay wall structures. Several optimisation paradigms like the mono- and the multi-objective optimisation are demonstrated and their use for a more efficient design concerning various intentions is shown in example. The optimisation is implemented by using Evolutionary Algorithms. The applicability to geotechnical real world problems including nonlinearities, discontinuities and multi-modalities is shown. The routines are adapted to common problems and coupled with conventional analysis procedures as well as with numerical calculation software based on the finite element method. Numerical optimisation of geotechnical design using efficient algorithms is able to deliver highly effective solutions after investing more effort into the parameterization of the problem. Obtained results can be used for realizing different constructions near the stability limit, visualizing the sensitivity regarding the construction parameters or simply procuring more effective solutions.

CONSTITUTIVE MODELS FOR SUBSOIL IN THE CONTEXT OF STRUCTURAL ANALYSIS IN CONSTRUCTION ENGINEERING
(2010)

Parameters of constitutive models are obtained generally comparing the results of forward numerical simulations to measurement data. Mostly the parameter values are varied by trial-and-error in order to reach an improved fit and obtain plausible results. However, the description of complex soil behavior requires advanced constitutive models where the rising complexity of these models mainly increases the number of unknown constitutive parameters. Thus an efficient identification "by hand" becomes quite difficult for most practical geotechnical problems. The main focus of this article is on finding a vector of parameters in a given search space which minimizes discrepancy between measurements and the associated numerical result. Classically, the parameter values are estimated from laboratory tests on small samples (triaxial tests or oedometer tests). For this purpose an automatic population-based approach is present to determine the material parameters for reconstituted and natural Bothkennar Clay. After the identification a statistical assessment is carried out of numerical results to evaluate different constitutive models. On the other side a geotechnical problem, stone columns under an embankment, is treated in a well instrumented field trial in Klagenfurt, Austria. For the identification purpose there are measurements from multilevel-piezometers, multilevel-extensometers and horizontal inclinometer. Based on the simulation of the stone columns in a FE-Model the identification of the constitutive parameters is similar to the experimental tests by minimizing the absolute error between measurement and numerical curves.

For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.

In this paper we present an inverse method which is capable of identifying system components in a hydro-mechanically coupled system, i.e. for fluid flow in porous media. As an example we regard water dams that were constructed more than hundred years ago but which are still in use. Over the time ageing processes have changed the condition of these dams. Within the dams fissures might have grown. The proposed method is designed to locate these fissures out of combined mechanical and hydraulic measurements. In a numerical example the fissures or damaged zones are described by a smeared crack model. The task is now to identify simultaneously the spatial distribution of Young’s modulus and the hydraulic permeability due to the fact, that in regions where damages are present, the mechanical stiffness of the system is reduced and the permeability increased. The inversion is shown to be an ill-posed problem. As a consequence regularizing methods have to be applied, where the nonlinear Landweber method (a gradient type method combined with a discrepancy principle) has proven to be an efficient choice.

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it with the well-known facts of harmonic analysis and Clifford analysis. In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic analysis is illustrated by the Fisher decomposition and the Howe duality for the space of spinor-valued polynomials in the Euclidean space under the so-called L-action. On the other hand, for Clifford algebra valued polynomials, we can consider another action, called in Clifford analysis the H-action. In the last section, we recall the Fisher decomposition for the H-action obtained recently. As in Clifford analysis the prominent role plays the Dirac equation in this case the basic set of equations is formed by the Hodge system. Moreover, analysis of Hodge systems can be viewed even as a refinement of Clifford analysis. In this note, we describe the Howe duality for the H-action. In particular, in Proposition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as the Lie superalgebra sl(2 1). Furthermore, Theorem 2 gives the corresponding multiplicity free decomposition with an explicit description of irreducible pieces.

MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES
(2010)

Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions.

There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression.

In recent years special hypercomplex Appell polynomials have been introduced by several authors and their main properties have been studied by different methods and with different objectives. Like in the classical theory of Appell polynomials, their generating function is a hypercomplex exponential function. The observation that this generalized exponential function has, for example, a close relationship with Bessel functions confirmed the practical significance of such an approach to special classes of hypercomplex differentiable functions. Its usefulness for combinatorial studies has also been investigated. Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences. Here we show how this opens the way for a more systematic study of the relation between some classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.

A stress based remodeling approach is used to investigate the sensitivity of the collagen architecture in humane eye tissues on the biomechanical response of the lamina cribrosa with a particular focus on the stress environment of the nerve fibers. This approach is based on a multi-level biomechanical framework, where the biomechanical properties of eye tissues are derived from a single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous reorientation of collagen fibrils. To investigate the multi-scale phenomena related to glaucomatous neuropathy a generalized computational homogenization scheme is applied to a coupled two-scale analysis of the human eye considering a numerical macro- and meso-scale model of the lamina cribrosa.

ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS
(2010)

Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach.

FREE VIBRATION FREQUENCIES OF THE CRACKED REINFORCED CONCRETE BEAMS - METHODS OF CALCULATIONS
(2010)

The paper presents method of calculation of natural frequencies of the cracked reinforced concrete beams including discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a way as to take into account local discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed using the author’s own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with the results obtained in experimental tests.

In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.

Sand-bentonite mixtures are well recognized as buffer and sealing material in nuclear waste repository constructions. The behaviour of compacted sand-bentonite mixture needs to be well understood in order to guarantee the safety and the efficiency of the barrier construction. This paper presents numerical simulations of swelling test and coupled thermo-hydro-mechanical (THM) test on compacted sand-bentonite mixture in order to reveal the influence of the temperature and hydraulic gradients on the distribution of temperature, mechanical stress and water content in such materials. Sensitivity analysis is carried out to identify the parameters which influence the most the response of the numerical model. Results of back analysis of the model parameters are reported and critically assessed.

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

Nonlinear analyses are characterised by approximations of the fundamental equations in different quality. Starting with a general description of nonlinear finite element formulation the fundamental equations are derived for plane truss elements. Special emphasis is placed on the determination of internal and external system energy as well as influence of different quality approaches for the displacement-strain relationship on solution quality. To simplify the solution procedure the nonlinear function describing the kinematics is expanded into a Taylor series and truncated after the n-th series term. The different kinematics influence speed of convergence as well as exactness of solution. On a simple truss structure this influence is shown. To assess the quality of different formulations concerning the nonlinear kinematic equation three approaches are discussed. First the overall internal and external energy is compared for different kinematical models. In a second step the energy content related to single terms describing displacement-strain relationship is investigated and used for quality control following two different paths. Based on single ε-terms an adaptive scheme is used to change the kinematical model depending on increasing nonlinearity of the structure. The solution quality has turned out satisfactory compared to the exact result. More detailed investigations are necessary to find criteria for the threshold values for the iterative process as well as for decision on number and step size of incremental load steps.

As numerical techniques for solving PDE or integral equations become more sophisticated, treatments of the generation of the geometric inputs should also follow that numerical advancement. This document describes the preparation of CAD data so that they can later be applied to hierarchical BEM or FEM solvers. For the BEM case, the geometric data are described by surfaces which we want to decompose into several curved foursided patches. We show the treatment of untrimmed and trimmed surfaces. In particular, we provide prevention of smooth corners which are bad for diffeomorphism. Additionally, we consider the problem of characterizing whether a Coons map is a diffeomorphism from the unit square onto a planar domain delineated by four given curves. We aim primarily at having not only theoretically correct conditions but also practically efficient methods. As for FEM geometric preparation, we need to decompose a 3D solid into a set of curved tetrahedra. First, we describe some method of decomposition without adding too many Steiner points (additional points not belonging to the initial boundary nodes of the boundary surface). Then, we provide a methodology for efficiently checking whether a tetrahedral transfinite interpolation is regular. That is done by a combination of degree reduction technique and subdivision. Along with the method description, we report also on some interesting practical results from real CAD data.

An energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS’s integral theorem. The total strain of each partition of the cross-section is split into load-dependent strain and pre-strain. Pre-strains have to be taken into account when the cross-section is pre-stressed, retrofit-ted or influenced by shrinkage, temperature etc. The unconstrained minimum problem can be solved for each load combination using standard software. The application of the method presented in the paper is demonstrated by means of examples.

In the paper presented, reinforced concrete shells of revolution are analyzed in both meridional and circumferential directions. Taking into account the physical non-linearity of the material, the internal forces and the deflections of the shell as well as the strain distribution at the cross-sections are calculated. The behavior of concrete under compression is described by linear and non-linear stress-strain relations. The description of the behavior of concrete under tension must account for tension stiffening effects. A tri-linear function is used to formulate the material law of reinforcement. The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical solution is formulated by means of the LAGRANGE Principle of the minimum of the total potential energy. The kinematically admissible field of deformation is defined by the displacements u in the meridional and w in the radial direction. These displacements must satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The strains are linearly distributed across the wall thickness. The strain energy depends on the specific of the material behavior. Using integral formulations of the material law [1], the strain energy of each part of the cross-section is defined as a function of the strains at the boundaries of the cross-sections. The shell is discretised in the meridional direction. Various methods of numerical differentiation and numerical integration are applied in order to determine the deformations and the strain energy. The unknown displacements u and w are calculated by a non-restricted extremum problem based on the minimum of the total potential energy. From mathematical point of view, the objective function is a convex function, thus the minimum can be determined without difficulty. The advantage of this formulation is that unlike non-linear methods with path-following algorithms the calculation does not have to account for changing stiffness and load increments. All iterations necessary to find the solution are integrated into the “Solver”. The model presented provides many ways of investigating the influence of various material parameters on the stresses and deformations of the entire shell structure.