### Refine

#### Document Type

- Article (40)
- Conference Proceeding (4)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Institute

- Juniorprofessur Stochastik und Optimierung (46) (remove)

#### Keywords

- Angewandte Mathematik (43)
- Stochastik (40)
- Strukturmechanik (40)
- Angewandte Informatik (3)
- Computerunterstütztes Verfahren (3)
- Building Information Modeling (2)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (2)
- Bayesian Inference, Uncertainty Quantification (1)
- Bayes’schen Inferenz (1)
- Concrete catenary pole (1)

This work presents a robust status monitoring approach for detecting damage in cantilever structures based on logistic functions. Also, a stochastic damage identification approach based on changes of eigenfrequencies is proposed. The proposed algorithms are verified using catenary poles of electrified railways track. The proposed damage features overcome the limitation of frequency-based damage identification methods available in the literature, which are valid to detect damage in structures to Level 1 only. Changes in eigenfrequencies of cantilever structures are enough to identify possible local damage at Level 3, i.e., to cover damage detection, localization, and quantification. The proposed algorithms identified the damage with relatively small errors, even at a high noise level.

Scalarization methods are a category of multiobjective optimization (MOO) methods. These methods allow the usage of conventional single objective optimization algorithms, as scalarization methods reformulate the MOO problem into a single objective optimization problem. The scalarization methods analysed within this thesis are the Weighted Sum (WS), the Epsilon-Constraint (EC), and the MinMax (MM) method. After explaining the approach of each method, the WS, EC and MM are applied, a-posteriori, to three different examples: to the Kursawe function; to the ten bar truss, a common benchmark problem in structural optimization; and to the metamodel of an aero engine exit module.
The aim is to evaluate and compare the performance of each scalarization method that is examined within this thesis. The evaluation is conducted using performance metrics, such as the hypervolume and the generational distance, as well as using visual comparison.
The application to the three examples gives insight into the advantages and disadvantages of each method, and provides further understanding of an adequate application of the methods concerning high dimensional optimization problems.

We present an extended finite element formulation for dynamic fracture of piezo-electric materials. The method is developed in the context of linear elastic fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-steady cracks. An implicit time integration scheme is exploited. The results are compared to results obtained with the boundary element method and show excellent agreement.

The fire resistance of concrete members is controlled by the temperature distribution of the considered cross section. The thermal analysis can be performed with the advanced temperature dependent physical properties provided by 5EN6 1992-1-2. But the recalculation of laboratory tests on columns from 5TU6 Braunschweig shows, that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed to identify the governing parameters of the temperature calculation and a nonlinear optimization method is used to enhance the formulation of the thermal properties. The proposed simplified properties are partly validated by the recalculation of measured temperatures of concrete columns. These first results show, that the scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed simple model for the thermal analysis of concrete.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.

In construction engineering, a schedule’s input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project.

The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!