### Refine

#### Institute

- Institut für Konstruktiven Ingenieurbau (2) (remove)

#### Keywords

#### Year of publication

- 2006 (2) (remove)

The presented method for an physically non-linear analysis of stresses and deformations of composite cross-sections and members based on energy principles and their transformation to non-linear optimisation problems. From the LAGRANGE principle of minimum of total potential energy a kinematic formulation of the mechanical problem can be developed, which has the general advantage that pre-deformations excited by shrinkage, temperature, residual deformations after unloading et al., can be considered directly. Thus the non-linear analysis of composite cross-sections with layers of different mechanical properties and different preloading becomes possible and cracks in concrete, stiffness degradation and other specifics of the material behaviour can be taken into account without cardinal modification of the mathematical model. The impact of local defects on the bearing capacity of an entire element can also be analysed in this principle way. Standard computational systems for mathematical optimisation or general programs for spreadsheet analysis enable an uncomplicated implementation of the developed models and an effective non-linear analysis for composite cross-sections and elements.

A new approach to the non-linear analysis of cross-sections loaded by normal forces and bending moments is presented in the paper. The mechanical model is based on the LAGRANGE principle of minimum of total potential energy. Deformations, stresses and limit load parameters are obtained by solving a non-linear optimisation problem. The mathematical model is independent of the specifics of material. In addition to the stress strain relation and the specific strain energy W(ε) two further functions F(ε) and Φ(ε) are introduced to describe the material behaviour. Thus cracks in concrete, non-linearity of material etc. can be taken into account without basic modification of the numerical algorithm. For polygonal cross-sections the GAUSS' integral theorem is used. Numerical solutions of the non-linear optimisation problems can be found by application of standard software. Thus the analysis of reinforced concrete cross-sections or more general composite cross-sections with non-linear behaviour of material is as simple as in the case of linear elasticity. The application of the method is demonstrated for polygonal cross-sections. Pre-stresses or pre-strains can easily be included in the mathematical model.