### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (82) (remove)

#### Keywords

- Angewandte Mathematik (82) (remove)

Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed.

The theory of regular quaternionic functions of a reduced quaternionic variable is a 3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a reduced quaternionic variable. The analogues of the main theorems of complex analysis for the MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent series, approximation theorems and Cauchy type integral properties. The analogues of positive powers (inner spherical monogenics) are investigated: the set of recurrence formulas between the inner spherical monogenics and the explicit formulas are established. Some applications of the regular function in the elasticity theory and hydrodynamics are given.

Portugal is one of the European countries with higher spatial and population freeway network coverage. The sharp growth of this network in the last years instigates the use of methods of analysis and the evaluation of their quality of service in terms of the traffic performance, typically performed through internationally accepted methodologies, namely that presented in the Highway Capacity Manual (HCM). Lately, the use of microscopic traffic simulation models has been increasingly widespread. These models simulate the individual movement of the vehicles, allowing to perform traffic analysis. The main target of this study was to verify the possibility of using microsimulation as an auxiliary tool in the adaptation of the methodology by HCM 2000 to Portugal. For this purpose, were used the microscopic simulators AIMSUN and VISSIM for the simulation of the traffic circulation in the A5 Portuguese freeway. The results allowed the analysis of the influence of the main geometric and traffic factors involved in the methodology by HCM 2000. In conclusion, the study presents the main advantages and limitations of the microsimulators AIMSUN and VISSIM in modelling the traffic circulation in Portuguese freeways. The main limitation is that these microsimulators are not able to simulate explicitly some of the factors considered in the HCM 2000 methodology, which invalidates their direct use as a tool in the quantification of those effects and, consequently, makes the direct adaptation of this methodology to Portugal impracticable.

In this paper, we present an empirical approach for objective and quantitative benchmarking of optimization algorithms with respect to characteristics induced by the forward calculation. Due to the professional background of the authors, this benchmarking strategy is illustrated on a selection of search methods in regard to expected characteristics of geotechnical parameter back calculation problems. Starting from brief introduction into the approach employed, a strategy for optimization algorithm benchmarking is introduced. The benchmarking utilizes statistical tests carried out on well-known test functions superposed with perturbations, both chosen to mimic objective function topologies found for geotechnical objective function topologies. Here, the moved axis parallel hyper-ellipsoid test function and the generalized Ackley test function in conjunction with an adjustable quantity of objective function topology roughness and fraction of failing forward calculations is analyzed. In total, results for 5 optimization algorithms are presented, compared and discussed.

VARIATIONAL POSITING AND SOLUTION OF COUPLED THERMOMECHANICAL PROBLEMS IN A REFERENCE CONFIGURATION
(2015)

Variational formulation of a coupled thermomechanical problem of anisotropic solids for the case of non-isothermal finite deformations in a reference configuration is shown. The formulation of the problem includes: a condition of equilibrium flow of a deformation process in the reference configuration; an equation of a coupled heat conductivity in a variational form, in which an influence of deformation characteristics of a process on the temperature field is taken into account; tensor-linear constitutive relations for a hypoelastic material; kinematic and evolutional relations; initial and boundary conditions. Based on this formulation several axisymmetric isothermal and coupled problems of finite deformations of isotropic and anisotropic bodies are solved. The solution of coupled thermomechanical problems for a hollow cylinder in case of finite deformation showed an essential influence of coupling on distribution of temperature, stresses and strains. The obtained solutions show the development of stressstrain state and temperature changing in axisymmetric bodies in the case of finite deformations.

What is nowadays called (classic) Clifford analysis consists in the establishment of a function theory for functions belonging to the kernel of the Dirac operator. While such functions can very well describe problems of a particle with internal SU(2)-symmetries, higher order symmetries are beyond this theory. Although many modifications (such as Yang-Mills theory) were suggested over the years they could not address the principal problem, the need of a n-fold factorization of the d’Alembert operator. In this paper we present the basic tools of a fractional function theory in higher dimensions, for the transport operator (alpha = 1/2 ), by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed.

Recently there has been a surge of interest in PDEs involving fractional derivatives in different fields of engineering. In this extended abstract we present some of the results developedin [3]. We compute the fundamental solution for the three-parameter fractional Laplace operator Δ by transforming the eigenfunction equation into an integral equation and applying the method of separation of variables. The obtained solutions are expressed in terms of Mittag-Leffer functions. For more details we refer the interested reader to [3] where it is also presented an operational approach based on the two Laplace transform.

In this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we only obtain inequality relations in the polymonogenic setting. This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function consists of different monogenic component functions where each of them can have a totally different kind of asymptotic growth behavior.

This article presents the Rigid Finite Element Method in the calculation of reinforced concrete beam deflection with cracks. Initially, this method was used in the shipbuilding industry. Later, it was adapted in the homogeneous calculations of the bar structures. In this method, rigid mass discs serve as an element model. In the flat layout, three generalized coordinates (two translational and one rotational) correspond to each disc. These discs are connected by elastic ties. The genuine idea is to take into account a discrete crack in the Rigid Finite Element Method. It consists in the suitable reduction of the rigidity in rotational ties located in the spots, where cracks occurred. The susceptibility of this tie results from the flexural deformability of the element and the occurrence of the crack. As part of the numerical analyses, the influence of cracks on the total deflection of beams was determined. Furthermore, the results of the calculations were compared to the results of the experiment. Overestimations of the calculated deflections against the measured deflections were found. The article specifies the size of the overestimation and describes its causes.

The sizing of simple resonators like guitar strings or laser mirrors is directly connected to the wavelength and represents no complex optimisation problem. This is not the case with liquid-filled acoustic resonators of non-trivial geometries, where several masses and stiffnesses of the structure and the fluid have to fit together. This creates a scenario of many competing and interacting resonances varying in relative strength and frequency when design parameters change. Hence, the resonator design involves a parameter-tuning problem with many local optima. As its solution evolutionary algorithms (EA) coupled to a forced-harmonic FE simulation are presented. A new hybrid EA is proposed and compared to two state-of-theart EAs based on selected test problems. The motivating background is the search for better resonators suitable for sonofusion experiments where extreme states of matter are sought in collapsing cavitation bubbles.

The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.

It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics.

Steel profiles with slender cross-sections are characterized by their high susceptibility to instability phenomena, especially local buckling, which are intensified under fire conditions. This work presents a study on numerical modelling of the behaviour of steel structural elements in case of fire with slender cross-sections. To accurately carry out these analyses it is necessary to take into account those local instability modes, which normally is only possible with shell finite elements. However, aiming at the development of more expeditious methods, particularly important for analysing complete structures in case of fire, recent studies have proposed the use of beam finite elements considering the presence of local buckling through the implementation of a new effective steel constitutive law. The objective of this work is to develop a study to validate this methodology using the program SAFIR. Comparisons are made between the results obtained applying the referred new methodology and finite element analyses using shell elements. The studies were made to laterally restrained beams, unrestrained beams, axially compressed columns and columns subjected to bending plus compression.

The Laguerre polynomials appear naturally in many branches of pure and applied mathematics and mathematical physics. Debnath introduced the Laguerre transform and derived some of its properties. He also discussed the applications in study of heat conduction and to the oscillations of a very long and heavy chain with variable tension. An explicit boundedness for some class of Laguerre integral transforms will be present.

SELECTION AND SCALING OF GROUND MOTION RECORDS FOR SEISMIC ANALYSIS USING AN OPTIMIZATION ALGORITHM
(2015)

The nonlinear time history analysis and seismic performance based methods require a set of scaled ground motions. The conventional procedure of ground motion selection is based on matching the motion properties, e.g. magnitude, amplitude, fault distance, and fault mechanism. The seismic target spectrum is only used in the scaling process following the random selection process. Therefore, the aim of the paper is to present a procedure to select a sets of ground motions from a built database of ground motions. The selection procedure is based on running an optimization problem using Dijkstra’s algorithm to match the selected set of ground motions to a target response spectrum. The selection and scaling procedure of optimized sets of ground motions is presented by examining the analyses of nonlinear single degree of freedom systems.

Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model.

BAUHAUS ISOMETRY AND FIELDS
(2012)

While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session.

Electromagnetic wave propagation is currently present in the vast majority of situations which occur in veryday life, whether in mobile communications, DTV, satellite tracking, broadcasting, etc. Because of this the study of increasingly complex means of propagation of lectromagnetic waves has become necessary in order to optimize resources and increase the capabilities of the devices as required by the growing demand for such services.
Within the electromagnetic wave propagation different parameters are considered that characterize it under various circumstances and of particular importance are the reflectance and transmittance. There are several methods or the analysis of the reflectance and transmittance such as the method of approximation by boundary condition, the plane wave expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods.
The implementation of the WKB method is relatively simple but is found to be relatively efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a new representation for solutions of Sturm Liouville equations and has recently proven to be a powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a very suitable structure for numerical implementation, which in this case took place in the Matlab software for the valuation of both conventional and turning points profiles.
The comparison between the two methods allows us to obtain valuable information about their perfor mance which is useful for determining the validity and propriety of their application for solving problems where these parameters are calculated in real life applications.

It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.

MODEL DESCRIBING STATIC AND DYNAMIC DISPLACEMENTS OF SILOS WALL DURING THE FLOW OF LOOSE MATERIAL
(2012)

Correct evaluation of wall displacements is a key matter when designing silos. This issue is important from both the standpoint of design engineer (load-bearing capacity of structures) and end-consumer (durability of structures). Commonplace methods of silo design mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to specify methods of dynamic displacements analysis. Measurements of stressacting on silo walls prove that the actual stress is sum of static and dynamic stresses. Janssen came up with differential equation describing state of static equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on silo walls can be determined. Equations of motion were determined from equilibrium equations of feature objects. General solution, describing dynamic stresses was presented as parametric model. This paper presents particular integrals of differential equation, which enable analysing displacements and vibrations for different rigidities of silo walls, types of granular solid and its flow rate.