Refine
Document Type
- Article (4) (remove)
Institute
Keywords
- Angewandte Mathematik (2)
- Aerodynamik (1)
- Aeroelastizität (1)
- Angewandte Informatik (1)
- Brücke (1)
- Ingenieurwissenschaften (1)
- Laplace-Operator (1)
- Modellierung (1)
- Stochastik (1)
- Strukturmechanik (1)
- abstract modelling (1)
- abstraction (1)
- aerodynamic models (1)
- bridge (1)
- bridge aerodynamics (1)
- bridge aeroelasticity (1)
- category theory (1)
- discrete fourier transform (1)
- discrete fundamental solution (1)
- diskrete Fourier-Transformation (1)
- engineering (1)
- formal approaches (1)
- laplace operator (1)
- model complexity (1)
- modelling (1)
- rectangular lattice (1)
- type theory (1)
This paper presents numerical analysis of the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice. Additionally, to provide estimates in interior and exterior domains, two different regularisations of the discrete fundamental solution are considered. Estimates for the absolute difference and lp-estimates are constructed for both regularisations. Thus, this work extends the classical results in the discrete potential theory to the case of a rectangular lattice and serves as a basis for future convergence analysis of the method of discrete potentials on rectangular lattices.
Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems.
A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks
(2019)
Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary.
This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterisation is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications.