### Refine

#### Document Type

- Conference Proceeding (78)
- Article (9)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (49)
- Institut für Strukturmechanik (19)
- Graduiertenkolleg 1462 (12)
- Juniorprofessur Stochastik und Optimierung (3)
- Professur Angewandte Mathematik (3)
- Institut für Konstruktiven Ingenieurbau (2)
- Institut für Mathematik-Bauphysik (1)
- Professur Stahlbau (1)

#### Keywords

- Angewandte Mathematik (87) (remove)

#### Year of publication

- 2010 (87) (remove)

From 7 till 9 July 2009, the 18th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering is going to take place at the Bauhaus University Weimar. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences to report on their results in research, development and practice and to discuss. The conference offers several topics. Plenary lectures and thematic sessions will take place under the chairmanship of the mentioned colleagues.
We invite architects, civil engineers, designers, computer scientists, engineers, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference.

In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.

Isogeometric finite element analysis has become a powerful alternative to standard finite elements due to their flexibility in handling complex geometries. One major drawback of NURBS based isogeometric finite elements is their less effectiveness of local refinement. In this study, we present an alternative to NURBS based isogeometric finite elements that allow for local refinement. The idea is based on polynomial splines and exploits the flexibility of T-meshes for local refinement. The shape functions satisfy important properties such as non-negativity, local support and partition of unity. We will demonstrate the efficiency of the proposed method by two numerical examples.

Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.

The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial.

We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS
(2010)

Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach.

FREE VIBRATION FREQUENCIES OF THE CRACKED REINFORCED CONCRETE BEAMS - METHODS OF CALCULATIONS
(2010)

The paper presents method of calculation of natural frequencies of the cracked reinforced concrete beams including discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a way as to take into account local discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed using the author’s own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with the results obtained in experimental tests.

In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.