### Refine

#### Has Fulltext

- yes (4) (remove)

#### Institute

#### Keywords

- Computerunterstütztes Verfahren (4) (remove)

In this paper we evaluate 2D models for soil-water characteristic curve (SWCC), that incorporate the hysteretic nature of the relationship between volumetric water content Θ and suction Ψ. The models are based on nonlinear least squares estimation of the experimental data for sand. To estimate the dependent variable Θ the proposed models include two independent variables, suction and sensors reading position (depth d in the column test). The variable d represents not only the position where suction and water content are measured but also the initial suction distribution before each of the hydraulic loading test phases. Due to this the proposed 2D regression models acquire the advantage that they: (a) can be applied for prediction of Θ for any position along the column and (b) give the functional form for the scanning curves.

Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil’s behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions.

In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field.

The aim of this study is to show an application of model robustness measures for soilstructure interaction (henceforth written as SSI) models. Model robustness defines a measure for the ability of a model to provide useful model answers for input parameters which typically have a wide range in geotechnical engineering. The calculation of SSI is a major problem in geotechnical engineering. Several different models exist for the estimation of SSI. These can be separated into analytical, semi-analytical and numerical methods. This paper focuses on the numerical models of SSI specific macro-element type models and more advanced finite element method models using contact description as continuum or interface elements. A brief description of the models used is given in the paper. Following this description, the applied SSI problem is introduced. The observed event is a static loaded shallow foundation with an inclined load. The different partial models to consider the SSI effects are assessed using different robustness measures during numerical application. The paper shows the investigation of the capability to use these measures for the assessment of the model quality of SSI partial models. A variance based robustness and a mathematical robustness approaches are applied. These different robustness measures are used in a framework which allows also the investigation of computational time consuming models. Finally the result shows that the concept of using robustness approaches combined with other model–quality indicators (e.g. model sensitivity or model reliability) can lead to unique model–quality assessment for SSI models.