### Refine

#### Document Type

- Conference Proceeding (145) (remove)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (82)
- Graduiertenkolleg 1462 (31)
- Institut für Strukturmechanik (ISM) (12)
- Professur Angewandte Mathematik (12)
- Institut für Konstruktiven Ingenieurbau (IKI) (4)
- Professur Informatik im Bauwesen (4)
- Professur Stochastik und Optimierung (3)
- Professur Computer Vision in Engineering (2)
- Professur Stahlbau (2)
- Institut für Bauinformatik, Mathematik und Bauphysik (IBMB) (1)

#### Keywords

- Angewandte Mathematik (145) (remove)

We present the way of calculation of displacement in the bent reinforced concrete bar elements where rearrangement of internal forces and plastic hinge occurred. The described solution is based on prof. Borcz’s mathematical model. It directly takes into consideration the effects connected with the occurrence of plastic hinge, such as for example a crack, by means of a differential equation of axis of the bent reinforced concrete beam. The EN Eurocode 2 makes it possible to consider the influence of plastic hinge on the values of the reinforced concrete structures. This influence can also be assumed using other analytical methods. However, the results obtained by the application of Eurocode 2 are higher from those received in testing. Just comparably big error level occurs when calculations are made by means of Borcz’s method, but in the latter case, the results depend on the assumptions made beforehand. This method makes it possible to apply the experimental results using parameters r1 i r0. When the experimental results are taken into account, one could observe the compatibility between the calculations and actual deflections of the structure.

By the use of numerical methods and the rapid development of computer technology in the recent years, a large variety, complexity, refinement and capability of partial models have been achieved. This can be noticed in the evaluation of the reliability of structures, e.g. the increased use of spatial structural systems. For the different fields of civil engineering, well developed partial models already exist. Because these partial models are most often used separately, the general view is not entirely illustrated. Until now, there has been no common methodology for evaluating the efficiency of models; the trust in the prediction of a special engineering model has generally relied on the engineer’s experience. In this paper the basics of evaluation of simple models and coupled partial models of frame structures will be discussed using sustainable numerical methods. Furthermore, quality classes (levels) of design tasks will be defined based on their practical relevance. In addition, analysis methods will be systemized. After analysis of different published assessment methods, it may be noted, that the Efficiency Indicator Method (EWM) is most suitable for the observed evaluation problem. Therefore, the EWM was modified to the Model Efficiency Analysis (MEA) for the purpose of a holistic evaluation. The criteria are characterized by two groups, benefit and expenditure, and it is possible by calculating the quotient (benefit/expenditure) to make a statement about the efficiency of the observed models. Presently, the expenditure value is not a subject of investigation, and so the model efficiency is calculated only by the benefit value. This paper also contains the associated criteria catalog, different normalization methods, as well as weighting possibilities.

In the paper presented, reinforced concrete shells of revolution are analyzed in both meridional and circumferential directions. Taking into account the physical non-linearity of the material, the internal forces and the deflections of the shell as well as the strain distribution at the cross-sections are calculated. The behavior of concrete under compression is described by linear and non-linear stress-strain relations. The description of the behavior of concrete under tension must account for tension stiffening effects. A tri-linear function is used to formulate the material law of reinforcement. The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical solution is formulated by means of the LAGRANGE Principle of the minimum of the total potential energy. The kinematically admissible field of deformation is defined by the displacements u in the meridional and w in the radial direction. These displacements must satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The strains are linearly distributed across the wall thickness. The strain energy depends on the specific of the material behavior. Using integral formulations of the material law [1], the strain energy of each part of the cross-section is defined as a function of the strains at the boundaries of the cross-sections. The shell is discretised in the meridional direction. Various methods of numerical differentiation and numerical integration are applied in order to determine the deformations and the strain energy. The unknown displacements u and w are calculated by a non-restricted extremum problem based on the minimum of the total potential energy. From mathematical point of view, the objective function is a convex function, thus the minimum can be determined without difficulty. The advantage of this formulation is that unlike non-linear methods with path-following algorithms the calculation does not have to account for changing stiffness and load increments. All iterations necessary to find the solution are integrated into the “Solver”. The model presented provides many ways of investigating the influence of various material parameters on the stresses and deformations of the entire shell structure.

As numerical techniques for solving PDE or integral equations become more sophisticated, treatments of the generation of the geometric inputs should also follow that numerical advancement. This document describes the preparation of CAD data so that they can later be applied to hierarchical BEM or FEM solvers. For the BEM case, the geometric data are described by surfaces which we want to decompose into several curved foursided patches. We show the treatment of untrimmed and trimmed surfaces. In particular, we provide prevention of smooth corners which are bad for diffeomorphism. Additionally, we consider the problem of characterizing whether a Coons map is a diffeomorphism from the unit square onto a planar domain delineated by four given curves. We aim primarily at having not only theoretically correct conditions but also practically efficient methods. As for FEM geometric preparation, we need to decompose a 3D solid into a set of curved tetrahedra. First, we describe some method of decomposition without adding too many Steiner points (additional points not belonging to the initial boundary nodes of the boundary surface). Then, we provide a methodology for efficiently checking whether a tetrahedral transfinite interpolation is regular. That is done by a combination of degree reduction technique and subdivision. Along with the method description, we report also on some interesting practical results from real CAD data.

Nonlinear analyses are characterised by approximations of the fundamental equations in different quality. Starting with a general description of nonlinear finite element formulation the fundamental equations are derived for plane truss elements. Special emphasis is placed on the determination of internal and external system energy as well as influence of different quality approaches for the displacement-strain relationship on solution quality. To simplify the solution procedure the nonlinear function describing the kinematics is expanded into a Taylor series and truncated after the n-th series term. The different kinematics influence speed of convergence as well as exactness of solution. On a simple truss structure this influence is shown. To assess the quality of different formulations concerning the nonlinear kinematic equation three approaches are discussed. First the overall internal and external energy is compared for different kinematical models. In a second step the energy content related to single terms describing displacement-strain relationship is investigated and used for quality control following two different paths. Based on single ε-terms an adaptive scheme is used to change the kinematical model depending on increasing nonlinearity of the structure. The solution quality has turned out satisfactory compared to the exact result. More detailed investigations are necessary to find criteria for the threshold values for the iterative process as well as for decision on number and step size of incremental load steps.

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.

FREE VIBRATION FREQUENCIES OF THE CRACKED REINFORCED CONCRETE BEAMS - METHODS OF CALCULATIONS
(2010)

The paper presents method of calculation of natural frequencies of the cracked reinforced concrete beams including discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a way as to take into account local discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed using the author’s own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with the results obtained in experimental tests.

ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS
(2010)

Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

A stress based remodeling approach is used to investigate the sensitivity of the collagen architecture in humane eye tissues on the biomechanical response of the lamina cribrosa with a particular focus on the stress environment of the nerve fibers. This approach is based on a multi-level biomechanical framework, where the biomechanical properties of eye tissues are derived from a single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous reorientation of collagen fibrils. To investigate the multi-scale phenomena related to glaucomatous neuropathy a generalized computational homogenization scheme is applied to a coupled two-scale analysis of the human eye considering a numerical macro- and meso-scale model of the lamina cribrosa.

In recent years special hypercomplex Appell polynomials have been introduced by several authors and their main properties have been studied by different methods and with different objectives. Like in the classical theory of Appell polynomials, their generating function is a hypercomplex exponential function. The observation that this generalized exponential function has, for example, a close relationship with Bessel functions confirmed the practical significance of such an approach to special classes of hypercomplex differentiable functions. Its usefulness for combinatorial studies has also been investigated. Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences. Here we show how this opens the way for a more systematic study of the relation between some classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.

The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter ‘T’. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the “undercut” beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.

There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression.

MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES
(2010)

Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions.

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it with the well-known facts of harmonic analysis and Clifford analysis. In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic analysis is illustrated by the Fisher decomposition and the Howe duality for the space of spinor-valued polynomials in the Euclidean space under the so-called L-action. On the other hand, for Clifford algebra valued polynomials, we can consider another action, called in Clifford analysis the H-action. In the last section, we recall the Fisher decomposition for the H-action obtained recently. As in Clifford analysis the prominent role plays the Dirac equation in this case the basic set of equations is formed by the Hodge system. Moreover, analysis of Hodge systems can be viewed even as a refinement of Clifford analysis. In this note, we describe the Howe duality for the H-action. In particular, in Proposition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as the Lie superalgebra sl(2 1). Furthermore, Theorem 2 gives the corresponding multiplicity free decomposition with an explicit description of irreducible pieces.

In this paper we present an inverse method which is capable of identifying system components in a hydro-mechanically coupled system, i.e. for fluid flow in porous media. As an example we regard water dams that were constructed more than hundred years ago but which are still in use. Over the time ageing processes have changed the condition of these dams. Within the dams fissures might have grown. The proposed method is designed to locate these fissures out of combined mechanical and hydraulic measurements. In a numerical example the fissures or damaged zones are described by a smeared crack model. The task is now to identify simultaneously the spatial distribution of Young’s modulus and the hydraulic permeability due to the fact, that in regions where damages are present, the mechanical stiffness of the system is reduced and the permeability increased. The inversion is shown to be an ill-posed problem. As a consequence regularizing methods have to be applied, where the nonlinear Landweber method (a gradient type method combined with a discrepancy principle) has proven to be an efficient choice.

For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.

In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus.

CONSTITUTIVE MODELS FOR SUBSOIL IN THE CONTEXT OF STRUCTURAL ANALYSIS IN CONSTRUCTION ENGINEERING
(2010)

Parameters of constitutive models are obtained generally comparing the results of forward numerical simulations to measurement data. Mostly the parameter values are varied by trial-and-error in order to reach an improved fit and obtain plausible results. However, the description of complex soil behavior requires advanced constitutive models where the rising complexity of these models mainly increases the number of unknown constitutive parameters. Thus an efficient identification "by hand" becomes quite difficult for most practical geotechnical problems. The main focus of this article is on finding a vector of parameters in a given search space which minimizes discrepancy between measurements and the associated numerical result. Classically, the parameter values are estimated from laboratory tests on small samples (triaxial tests or oedometer tests). For this purpose an automatic population-based approach is present to determine the material parameters for reconstituted and natural Bothkennar Clay. After the identification a statistical assessment is carried out of numerical results to evaluate different constitutive models. On the other side a geotechnical problem, stone columns under an embankment, is treated in a well instrumented field trial in Klagenfurt, Austria. For the identification purpose there are measurements from multilevel-piezometers, multilevel-extensometers and horizontal inclinometer. Based on the simulation of the stone columns in a FE-Model the identification of the constitutive parameters is similar to the experimental tests by minimizing the absolute error between measurement and numerical curves.