### Refine

#### Institute

- Institut für Strukturmechanik (22) (remove)

#### Keywords

- Computerunterstütztes Verfahren (22) (remove)

In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.

A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.

The numerical simulation of microstructure models in 3D requires, due to enormous d.o.f., significant resources of memory as well as parallel computational power. Compared to homogeneous materials, the material hetrogeneity on microscale induced by different material phases demand for adequate computational methods for discretization and solution process of the resulting highly nonlinear problem. To enable an efficient/scalable solution process of the linearized equation systems the heterogeneous FE problem will be described by a FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) discretization. The fundamental FETI-DP equation can be solved by a number of different approaches. In our approach the FETI-DP problem will be reformulated as Saddle Point system, by eliminating the primal and Lagrangian variables. For the reduced Saddle Point system, only defined by interior and dual variables, special Uzawa algorithms can be adapted for iteratively solving the FETI-DP saddle-point equation system (FETI-DP SPE). A conjugate gradient version of the Uzawa algorithm will be shown as well as some numerical tests regarding to FETI-DP discretization of small examples using the presented solution technique. Furthermore the inversion of the interior-dual Schur complement operator can be approximated using different techniques building an adequate preconditioning matrix and therewith leading to substantial gains in computing time efficiency.

From the design experiences of arch dams in the past, it has significant practical value to carry out the shape optimization of arch dams, which can fully make use of material characteristics and reduce the cost of constructions. Suitable variables need to be chosen to formulate the objective function, e.g. to minimize the total volume of the arch dam. Additionally a series of constraints are derived and a reasonable and convenient penalty function has been formed, which can easily enforce the characteristics of constraints and optimal design. For the optimization method, a Genetic Algorithm is adopted to perform a global search. Simultaneously, ANSYS is used to do the mechanical analysis under the coupling of thermal and hydraulic loads. One of the constraints of the newly designed dam is to fulfill requirements on the structural safety. Therefore, a reliability analysis is applied to offer a good decision supporting for matters concerning predictions of both safety and service life of the arch dam. By this, the key factors which would influence the stability and safety of arch dam significantly can be acquired, and supply a good way to take preventive measures to prolong ate the service life of an arch dam and enhances the safety of structure.

PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS
(2010)

In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.

NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE
(2010)

This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.

Advanced finite elements are proposed for the mechanical analysis of heterogeneous materials. The approximation quality of these finite elements can be controlled by a variable order of B-spline shape functions. An element-based formulation is developed such that the finite element problem can iteratively be solved without storing a global stiffness matrix. This memory saving allows for an essential increase of problem size. The heterogeneous material is modelled by projection onto a uniform, orthogonal grid of elements. Conventional, strictly grid-based finite element models show severe oscillating defects in the stress solutions at material interfaces. This problem is cured by the extension to multiphase finite elements. This concept enables to define a heterogeneous material distribution within the finite element. This is possible by a variable number of integration points to each of which individual material properties can be assigned. Based on an interpolation of material properties at nodes and further smooth interpolation within the finite elements, a continuous material function is established. With both, continuous B-spline shape function and continuous material function, also the stress solution will be continuous in the domain. The inaccuracy implied by the continuous material field is by far less defective than the prior oscillating behaviour of stresses. One- and two-dimensional numerical examples are presented.

A fast solver method called the multigrid preconditioned conjugate gradient method is proposed for the mechanical analysis of heterogeneous materials on the mesoscale. Even small samples of a heterogeneous material such as concrete show a complex geometry of different phases. These materials can be modelled by projection onto a uniform, orthogonal grid of elements. As one major problem the possible resolution of the concrete specimen is generally restricted due to (a) computation times and even more critical (b) memory demand. Iterative solvers can be based on a local element-based formulation while orthogonal grids consist of geometrical identical elements. The element-based formulation is short and transparent, and therefore efficient in implementation. A variation of the material properties in elements or integration points is possible. The multigrid method is a fast iterative solver method, where ideally the computational effort only increases linear with problem size. This is an optimal property which is almost reached in the implementation presented here. In fact no other method is known which scales better than linear. Therefore the multigrid method gains in importance the larger the problem becomes. But for heterogeneous models with very large ratios of Young's moduli the multigrid method considerably slows down by a constant factor. Such large ratios occur in certain heterogeneous solids, as well as in the damage analysis of solids. As solution to this problem the multigrid preconditioned conjugate gradient method is proposed. A benchmark highlights the multigrid preconditioned conjugate gradient method as the method of choice for very large ratio's of Young's modulus. A proposed modified multigrid cycle shows good results, in the application as stand-alone solver or as preconditioner.

The design and application of high performance materials demands extensive knowledge of the materials damage behavior, which significantly depends on the meso- and microstructural complexity. Numerical simulations of crack growth on multiple length scales are promising tools to understand the damage phenomena in complex materials. In polycrystalline materials it has been observed that the grain boundary decohesion is one important mechanism that leads to micro crack initiation. Following this observation the paper presents a polycrystal mesoscale model consisting of grains with orthotropic material behavior and cohesive interfaces along grain boundaries, which is able to reproduce the crack initiation and propagation along grain boundaries in polycrystalline materials. With respect to the importance of modeling the geometry of the grain structure an advanced Voronoi algorithm is proposed to generate realistic polycrystalline material structures based on measured grain size distribution. The polycrystal model is applied to investigate the crack initiation and propagation in statically loaded representative volume elements of aluminum on the mesoscale without the necessity of initial damage definition. Future research work is planned to include the mesoscale model into a multiscale model for the damage analysis in polycrystalline materials.

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!

The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions.

In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.

The extended finite element method (XFEM) offers an elegant tool to model material discontinuities and cracks within a regular mesh, so that the element edges do not necessarily coincide with the discontinuities. This allows the modeling of propagating cracks without the requirement to adapt the mesh incrementally. Using a regular mesh offers the advantage, that simple refinement strategies based on the quadtree data structure can be used to refine the mesh in regions, that require a high mesh density. An additional benefit of the XFEM is, that the transmission of cohesive forces through a crack can be modeled in a straightforward way without introducing additional interface elements. Finally different criteria for the determination of the crack propagation angle are investigated and applied to numerical tests of cracked concrete specimens, which are compared with experimental results.

The present paper is part of a comprehensive approach of grid-based modelling. This approach includes geometrical modelling by pixel or voxel models, advanced multiphase B-spline finite elements of variable order and fast iterative solver methods based on the multigrid method. So far, we have only presented these grid-based methods in connection with linear elastic analysis of heterogeneous materials. Damage simulation demands further considerations. The direct stress solution of standard bilinear finite elements is severly defective, especially along material interfaces. Besides achieving objective constitutive modelling, various nonlocal formulations are applied to improve the stress solution. Such a corrective data processing can either refer to input data in terms of Young's modulus or to the attained finite element stress solution, as well as to a combination of both. A damage-controlled sequentially linear analysis is applied in connection with an isotropic damage law. Essentially by a high resolution of the heterogeneous solid, local isotropic damage on the material subscale allows to simulate complex damage topologies such as cracks. Therefore anisotropic degradation of a material sample can be simulated. Based on an effectively secantial global stiffness the analysis is numerically stable. The iteration step size is controlled for an adequate simulation of the damage path. This requires many steps, but in the iterative solution process each new step starts with the solution of the prior step. Therefore this method is quite effective. The present paper provides an introduction of the proposed concept for a stable simulation of damage in heterogeneous solids.

The modeling of crack propagation in plain and reinforced concrete structures is still a field for many researchers. If a macroscopic description of the cohesive cracking process of concrete is applied, generally the Fictitious Crack Model is utilized, where a force transmission over micro cracks is assumed. In the most applications of this concept the cohesive model represents the relation between the normal crack opening and the normal stress, which is mostly defined as an exponential softening function, independently from the shear stresses in tangential direction. The cohesive forces are then calculated only from the normal stresses. By Carol et al. 1997 an improved model was developed using a coupled relation between the normal and shear damage based on an elasto-plastic constitutive formulation. This model is based on a hyperbolic yield surface depending on the normal and the shear stresses and on the tensile and shear strength. This model also represents the effect of shear traction induced crack opening. Due to the elasto-plastic formulation, where the inelastic crack opening is represented by plastic strains, this model is limited for applications with monotonic loading. In order to enable the application for cases with un- and reloading the existing model is extended in this study using a combined plastic-damage formulation, which enables the modeling of crack opening and crack closure. Furthermore the corresponding algorithmic implementation using a return mapping approach is presented and the model is verified by means of several numerical examples. Finally an investigation concerning the identification of the model parameters by means of neural networks is presented. In this analysis an inverse approximation of the model parameters is performed by using a given set of points of the load displacement curves as input values and the model parameters as output terms. It will be shown, that the elasto-plastic model parameters could be identified well with this approach, but require a huge number of simulations.

In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.

In this paper an adaptive heterogeneous multiscale model, which couples two substructures with different length scales into one numerical model is introduced for the simulation of damage in concrete. In the presented approach the initiation, propagation and coalescence of microcracks is simulated using a mesoscale model, which explicitly represents the heterogeneous material structure of concrete. The mesoscale model is restricted to the damaged parts of the structure, whereas the undamaged regions are simulated on the macroscale. As a result an adaptive enlargement of the mesoscale model during the simulation is necessary. In the first part of the paper the generation of the heterogeneous mesoscopic structure of concrete, the finite element discretization of the mesoscale model, the applied isotropic damage model and the cohesive zone model are briefly introduced. Furthermore the mesoscale simulation of a uniaxial tension test of a concrete prism is presented and own obtained numerical results are compared to experimental results. The second part is focused on the adaptive heterogeneous multiscale approach. Indicators for the model adaptation and for the coupling between the different numerical models will be introduced. The transfer from the macroscale to the mesoscale and the adaptive enlargement of the mesoscale substructure will be presented in detail. A nonlinear simulation of a realistic structure using an adaptive heterogeneous multiscale model is presented at the end of the paper to show the applicability of the proposed approach to large-scale structures.

In engineering science the modeling and numerical analysis of complex systems and relations plays an important role. In order to realize such an investigation, for example a stochastic analysis, in a reasonable computational time, approximation procedure have been developed. A very famous approach is the response surface method, where the relation between input and output quantities is represented for example by global polynomials or local interpolation schemes as Moving Least Squares (MLS). In recent years artificial neural networks (ANN) have been applied as well for such purposes. Recently an adaptive response surface approach for reliability analyses was proposed, which is very efficient concerning the number of expensive limit state function evaluations. Due to the applied simplex interpolation the procedure is limited to small dimensions. In this paper this approach is extended for larger dimensions using combined ANN and MLS response surfaces for evaluating the adaptation criterion with only one set of joined limit state points. As adaptation criterion a combination by using the maximum difference in the conditional probabilities of failure and the maximum difference in the approximated radii is applied. Compared to response surfaces on directional samples or to plain directional sampling the failure probability can be estimated with a much smaller number of limit state points.

Major problems of applying selective sensitivity to system identification are requirement of precise knowledge about the system parameters and realization of the required system of forces. This work presents a procedure which is able to deriving selectively sensitive excitation by iterative experiments. The first step is to determine the selectively sensitive displacement and selectively sensitive force patterns. These values are obtained by introducing the prior information of system parameters into an optimization which minimizes the sensitivities of the structure response with respect to the unselected parameters while keeping the sensitivities with respect to the selected parameters as a constant. In a second step the force pattern is used to derive dynamic loads on the tested structure and measurements are carried out. An automatic control ensures the required excitation forces. In a third step, measured outputs are employed to update the prior information. The strategy is to minimize the difference between a predicted displacement response, formulated as function of the unknown parameters and the measured displacements, and the selectively sensitive displacement calculated in the first step. With the updated values of the parameters a re-analysis of selective sensitivity is performed and the experiment is repeated until the displacement response of the model and the actual structure are conformed. As an illustration a simply supported beam made of steel, vibrated by harmonic excitation is investigated, thereby demonstrating that the adaptive excitation can be obtained efficiently.

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares approximation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this method the obtained shape functions do not fulfill the interpolation condition, which causes additional numerical effort for the imposition of the essential boundary conditions. The application of a singular weighting function, which leads to singular coefficient matrices at the nodes, can solve this problem, but requires a very careful placement of the integration points. Special procedures for the handling of such singular matrices were proposed in literature, which require additional numerical effort. In this paper a non-singular weighting function is presented, which leads to an exact fulfillment of the interpolation condition. This weighting function leads to regular values of the weights and the coefficient matrices in the whole interpolation domain even at the nodes. Furthermore this function gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than classical weighting function types. Nevertheless, for practical applications the results are similar as these obtained with the regularized weighting type presented by the authors in previous publications. Finally a new concept will be presented, which enables an efficient analysis of systems with strongly varying node density. In this concept the nodal influence domains are adapted depending on the nodal configuration by interpolating the influence radius for each direction from the distances to the natural neighbor nodes. This approach requires a Voronoi diagram of the domain, which is available in this study since Delaunay triangles are used as integration background cells. In the numerical examples it will be shown, that this method leads to a more uniform and reduced number of influencing nodes for systems with varying node density than the classical circular influence domains, which means that the small additional numerical effort for interpolating the influence radius leads to remarkable reduction of the total numerical cost in a linear analysis while obtaining similar results. For nonlinear calculations this advantage would be even more significant.