### Refine

#### Document Type

- Conference Proceeding (80)
- Doctoral Thesis (17)
- Article (12)
- Master's Thesis (4)
- Periodical (2)
- Study Thesis (2)
- Report (1)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (50)
- Institut für Strukturmechanik (ISM) (20)
- Graduiertenkolleg 1462 (12)
- Professur Angewandte Mathematik (4)
- Junior-Professur Augmented Reality (3)
- Professur Informatik im Bauwesen (3)
- Professur Stochastik und Optimierung (3)
- An-Institute (2)
- Institut für Europäische Urbanistik (2)
- Institut für Konstruktiven Ingenieurbau (IKI) (2)
- Professur Betriebswirtschaftslehre im Bauwesen (2)
- Professur Grundbau (2)
- Professur Informatik in der Architektur (2)
- Professur Massivbau II (2)
- Professur Soziologie und Sozialgeschichte der Stadt (2)
- F. A. Finger-Institut für Baustoffkunde (FIB) (1)
- Geschichte und Theorie der Visuellen Kommunikation (1)
- Institut für Bauinformatik, Mathematik und Bauphysik (IBMB) (1)
- Professur Baubetrieb und Bauverfahren (1)
- Professur Bodenmechanik (1)
- Professur Marketing und Medien (1)
- Professur Medienmanagement (1)
- Professur Mediensicherheit (ab 2023 Professur Informationssicherheit und Kryptographie) (1)
- Professur Stahlbau (1)
- Professur Systeme der Virtuellen Realität (ab 2023 Professur Virtuelle Realität und Visualisierung) (1)
- Professur Verkehrsplanung und Verkehrstechnik (1)

#### Keywords

#### Year of publication

- 2010 (118) (remove)

Schwerpunkt Mediephilosophie
(2010)

Die prominent und polemisch geäusserte Ansicht, bei der Medienphilosophie handele es sich um eine vorübergehende Angelegenheit, ist vermutlich sehr zutreff end. Medienphilosophie selbst hat nie etwas anderes behauptet. Und genau aus diesem Grund, also eben wegen ihrer Vorläufigkeit, ist Medienphilosophie so wichtig. Sie tritt vielleicht tatsächlich als neue, modische Unterdisziplin der Philosophie auf. Aber sie tut dies, weil sie eine sehr ernsthafte Herausforderung an die Philosophie darstellt. Wie und wann sie wieder vergeht, das hängt davon ab, was sie ausrichtet. Medienphilosophie ist nämlich in ihrem Selbstverständnis ein grundlegend operatives und operationales Unternehmen. Daher rührt ihre große Nähe zu und ihr vitales Interesse an den Kulturtechniken und ihrer Erforschung.
Sie interessiert sich für Eingriff e aller Art – und ist selbst einer. Sie hat – und zwar keineswegs nur metaphorisch – Anteil am materiellen Körper der Philosophie, für den Philosophie selbst, immer hart am Begriff , sich gar nicht interessiert und dies auch nicht tun muss. Zum materiellen Körper der Philosophie zählten bereits die schreibende Hand, vielleicht das vorrangige Medium des philosophischen Eingriffs, und ihr Werkzeug, das Schreibzeug, das sie führt. Als Medienphilosophie widmet sich die Philosophie den Gesten, die sie in der Welt ausführt, und den Operationen, die sie an den Dingen und mit ihrer Hilfe vornimmt.

Schwerpunkt Kulturtechnik
(2010)

Medientheorie und historische Medienwissenschaft sind seit geraumer Zeit dabei, einen Schritt zu tun, der sie hierzulande zumindest teilweise in historische und systematische Kulturtechnikforschung überführt. Die Möglichkeit existiert, dass die Medien als Referenz eines Wissenschaftsparadigmas, das gerade dabei ist, die Forschungs- und Lehrstrukturen dieses Landes zu erobern, sich bereits im Zustand bloßen Nachlebens befinden. Damit kommen mindestens jene Teile der Medienforschung zu sich, die seit der Institutionalisierung von Medienwissenschaft realisieren mussten, dass jene Medien, mit denen sie es seit den 1980er Jahren zu tun hatten, sich nur schwer in den Rahmen der Medien der Medienwissenschaft fügen wollen. Es scheint daher so, als ließe sich mit dem Begriff der Kulturtechniken etwas fassen, das schon seit den 80er Jahren eine Spezifik der entstehenden deutschen Medienwissenschaft gewesen ist, eine Spezifik, die sie den angloamerikanischen media studies ebenso entfremdete wie der Kommunikationswissenschaft oder gar der Soziologie, die, im Banne der Aufklärung und des Gesellschaftsbegriff s stehend, über Medien grundsätzlich nur unter dem Aspekt der Öff entlichkeit nachdenken wollte. Was sich in den 80er Jahren des letzten Jahrhunderts etwa unter dem Titel einer Diskurs- und Medienanalyse formierte, zielte nicht primär auf eine Medientheorie oder die Geschichte von Einzelmedien ab, die längst identitätsstiftend für je eigene Forschungsdisziplinen geworden waren (Fotografie, Film, Fernsehen, Rundfunk), sondern auf eine Geschichte der Literatur, des Geistes, der Seele und der Sinne, die man der Literaturwissenschaft, der Philosophie, der Psychologie und der Ästhetik wegzunehmen gedachte, um sie auf einem anderen Schauplatz aufzuführen: dem der Medien – und gegenwärtig der Kulturtechniken. Weil aber gar nicht die Medien im Fokus der Entdeckung standen, sondern eine Rekontextualisierung der traditionellen Gegenstände der Geisteswissenschaften, genauer eine »Austreibung des Geistes aus den Geisteswissenschaften« (Friedrich Kittler), kam von vornherein anderes in den Blick als diejenigen Medien, die die Publizistik- und Kommunikationswissenschaft, die Massenmedienforschung oder die Einzelmedienwissenschaften als ihre primären Untersuchungsfelder auswiesen.

Isogeometric finite element analysis has become a powerful alternative to standard finite elements due to their flexibility in handling complex geometries. One major drawback of NURBS based isogeometric finite elements is their less effectiveness of local refinement. In this study, we present an alternative to NURBS based isogeometric finite elements that allow for local refinement. The idea is based on polynomial splines and exploits the flexibility of T-meshes for local refinement. The shape functions satisfy important properties such as non-negativity, local support and partition of unity. We will demonstrate the efficiency of the proposed method by two numerical examples.

In the context of finite element model updating using output-only vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the correct pairing of experimentally obtained and numerically derived natural frequencies and mode shapes is important. In many cases, only limited spatial information is available and noise is present in the measurements. Therefore, the automatic selection of the most likely numerical mode shape corresponding to a particular experimentally identified mode shape can be a difficult task. The most common criterion for indicating corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases and is not reliable for automatic approaches. In this paper, the purely mathematical modal assurance criterion will be enhanced by additional physical information from the numerical model in terms of modal strain energies. A numerical example and a benchmark study with experimental data are presented to show the advantages of the proposed energy-based criterion in comparison to the traditional modal assurance criterion.

We present recent developments of adaptive wavelet solvers for elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the preconditioned perturbed iteration. We apply the iteration to a simple model problem in order to identify the main ideas which a numerical realization of the abstract scheme is based upon. This indicates how these concepts carry over to wavelet discretizations. Finally we present numerical results for the Poisson eigenvalue problem on an L-shaped domain.

The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial.

Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.

We consider a structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.

Steel structural design is an integral part of the building construction process. So far, various methods of design have been applied in practice to satisfy the design requirements. This paper attempts to acquire the Differential Evolution Algorithms in automatization of specific synthesis and rationalization of design process. The capacity of the Differential Evolution Algorithms to deal with continuous and/or discrete optimization of steel structures is also demonstrated. The goal of this study is to propose an optimal design of steel frame structures using built-up I-sections and/or a combination of standard hot-rolled profiles. All optimized steel frame structures in this paper generated optimization solutions better than the original solution designed by the manufacturer. Taking the criteria regarding the quality and efficiency of the practical design into consideration, the produced optimal design with the Differential Evolution Algorithms can completely replace conventional design because of its excellent performance.

A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The contribution promotes a recent journal paper [1]. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations.

PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS
(2010)

In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.

Since the 90-ties the Pascal matrix, its generalizations and applications have been in the focus of a great amount of publications. As it is well known, the Pascal matrix, the symmetric Pascal matrix and other special matrices of Pascal type play an important role in many scientific areas, among them Numerical Analysis, Combinatorics, Number Theory, Probability, Image processing, Sinal processing, Electrical engineering, etc. We present a unified approach to matrix representations of special polynomials in several hypercomplex variables (new Bernoulli, Euler etc. polynomials), extending results of H. Malonek, G.Tomaz: Bernoulli polynomials and Pascal matrices in the context of Clifford Analysis, Discrete Appl. Math. 157(4)(2009) 838-847. The hypercomplex version of a new Pascal matrix with block structure, which resembles the ordinary one for polynomials of one variable will be discussed in detail.

This paper deals with the modelling and the analysis of masonry vaults. Numerical FEM analyses are performed using LUSAS code. Two vault typologies are analysed (barrel and cross-ribbed vaults) parametrically varying geometrical proportions and constraints. The proposed model and the developed numerical procedure are implemented in a computer analysis. Numerical applications are developed to assess the model effectiveness and the efficiency of the numerical procedure. The main object of the present paper is the development of a computational procedure which allows to define 3D structural behaviour of masonry vaults. For each investigated example, the homogenized limit analysis approach has been employed to predict ultimate load and failure mechanisms. Finally, both a mesh dependence study and a sensitivity analysis are reported. Sensitivity analysis is conducted varying in a wide range mortar tensile strength and mortar friction angle with the aim of investigating the influence of the mechanical properties of joints on collapse load and failure mechanisms. The proposed computer model is validated by a comparison with experimental results available in the literature.

Building information modeling offers a huge potential for increasing the productivity and quality of construction planning processes. Despite its promising concept, this approach has not found widespread use. One of the reasons is the insufficient coupling of the structural models with the general building model. Instead, structural engineers usually set up a structural model that is independent from the building model and consists of mechanical models of reduced dimension. An automatic model generation, which would be valuable in case of model revisions is therefore not possible. This can be overcome by a volumetric formulation of the problem. A recent approach employed the p-version of the finite element method to this problem. This method, in conjunction with a volumetric formulation is suited to simulate the structural behaviour of both „thick“ solid bodies and thin-walled structures. However, there remains a notable discretization error in the numerical models. This paper therefore proposes a new approach for overcoming this situation. It sugggests the combination of the Isogeometric analysis together with the volumetric models in order to integrate the structural design into the digital, building model-centered planning process and reduce the discretization error. The concept of the isogeometric analysis consists, roughly, in the application of NURBS functions to represent the geometry and the shape functions of the elements. These functions possess some beneficial properties regarding numerical simulation. Their use, however, leads to some intricacies related to the setup of the stiffness matrix. This paper describes some of these properties.

Information technology plays a key role in the everyday operation of buildings and campuses. Many proprietary technologies and methodologies can assist in effective Building Performance Monitoring (BPM) and efficient managing of building resources. The integration of related tools like energy simulator packages, facility, energy and building management systems, and enterprise resource planning systems is of benefit to BPM. However, the complexity to integrating such domain specific systems prevents their common usage. Service Oriented Architecture (SOA) has been deployed successfully in many large multinational companies to create integrated and flexible software systems, but so far this methodology has not been applied broadly to the field of BPM. This paper envisions that SOA provides an effective integration framework for BPM. Service oriented architecture for the ITOBO framework for sustainable and optimised building operation is proposed and an implementation for a building performance monitoring system is introduced.

The paper is devoted to a study of properties of homogeneous solutions of massless field equation in higher dimensions. We first treat the case of dimension 4. Here we use the two-component spinor language (developed for purposes of general relativity). We describe how are massless field operators related to a higher spin analogues of the de Rham sequence - the so called Bernstein-Gel'fand-Gel'fand (BGG) complexes - and how are they related to the twisted Dirac operators. Then we study similar question in higher (even) dimensions. Here we have to use more tools from representation theory of the orthogonal group. We recall the definition of massless field equations in higher dimensions and relations to higher dimensional conformal BGG complexes. Then we discuss properties of homogeneous solutions of massless field equation. Using some recent techniques for decomposition of tensor products of irreducible $Spin(m)$-modules, we are able to add some new results on a structure of the spaces of homogenous solutions of massless field equations. In particular, we show that the kernel of the massless field equation in a given homogeneity contains at least on specific irreducible submodule.

Due to increasing numbers of wind energy converters, the accurate assessment of the lifespan of their structural parts and the entire converter system is becoming more and more paramount. Lifespan-oriented design, inspections and remedial maintenance are challenging because of their complex dynamic behavior. Wind energy converters are subjected to stochastic turbulent wind loading causing corresponding stochastic structural response and vibrations associated with an extreme number of stress cycles (up to 109 according to the rotation of the blades). Currently, wind energy converters are constructed for a service life of about 20 years. However, this estimation is more or less made by rule of thumb and not backed by profound scientific analyses or accurate simulations. By contrast, modern structural health monitoring systems allow an improved identification of deteriorations and, thereupon, to drastically advance the lifespan assessment of wind energy converters. In particular, monitoring systems based on artificial intelligence techniques represent a promising approach towards cost-efficient and reliable real-time monitoring. Therefore, an innovative real-time structural health monitoring concept based on software agents is introduced in this contribution. For a short time, this concept is also turned into a real-world monitoring system developed in a DFG joint research project in the authors’ institute at the Ruhr-University Bochum. In this paper, primarily the agent-based development, implementation and application of the monitoring system is addressed, focusing on the real-time monitoring tasks in the deserved detail.

In order to model and simulate collapses of large scale complex structures, a user-friendly and high performance software system is essential. Because a large number of simulation experiments have to be performed, therefore, next to an appropriate simulation model and high performance computing, efficient interactive control and visualization capabilities of model parameters and simulation results are crucial. To this respect, this contribution is concerned with advancements of the software system CADCE (Computer Aided Demolition using Controlled Explosives) that is extended under particular consideration of computational steering concepts. Thereby, focus is placed on problems and solutions for the collapse simulation of real world large scale complex structures. The simulation model applied is based on a multilevel approach embedding finite element models on a local as well as a near field length scale, and multibody models on a global scale. Within the global level simulation, relevant effects of the local and the near field scale, such as fracture and failure processes of the reinforced concrete parts, are approximated by means of tailor-made multibody subsystems. These subsystems employ force elements representing nonlinear material characteristics in terms of force/displacement relationships that, in advance, are determined by finite element analysis. In particular, enhancements concerning the efficiency of the multibody model and improvements of the user interaction are presented that are crucial for the capability of the computational steering. Some scenarios of collapse simulations of real world large scale structures demonstrate the implementation of the above mentioned approaches within the computational steering.

CRITICAL STRESS ASSESSMENT IN ANGLE TO GUSSET PLATE BOLTED CONNECTION BY SIMPLIFIED FEM MODELLING
(2010)

Simplified modelling of friction grip bolted connections of steel member – to – gusset plate is often applied in engineering practise. The paper deals with the simplification of pre-tensioned bolt model and simplification of load transfer within connection. Influence on normal strain (and thus stress) distribution at critical cross-section is investigated. Laboratory testing of single-angle or double-angle members – to – gusset plates bolted connections were taken as basis for numerical analysis. FE models were created using 1D and 2D elements. Angles and gusset plates were modelled with shell elements. Two methods of modelling of friction grip bolting were considered: bolt-regarding approach with 1D element systems modelling bolts and two variants of bolt-disregarding approach with special constraints over some part of member and gusset plate surfaces in contact: a) constraints over whole area of contact, b) constraints over the area around each bolt shank (“partially tied”). Modelling of friction grip bolted connections using simplified bolt modelling may be effective, especially in the case of analysis concerning elastic range only. In such a case disregarding bolts and replacing them with “partially tied” modelling seems to be more attractive. It is less time-consuming and provides results of similar accuracy in comparison to analysis utilizing simplified bolt modelling.

The uncertainty existing in the construction industry is bigger than in other industries. Consequently, most construction projects do not go totally as planned. The project management plan needs therefore to be adapted repeatedly within the project lifecycle to suit the actual project conditions. Generally, the risks of change in the project management plan are difficult to be identified in advance, especially if these risks are caused by unexpected events such as human errors or changes in the client preferences. The knowledge acquired from different resources is essential to identify the probable deviations as well as to find proper solutions to the faced change risks. Hence, it is necessary to have a knowledge base that contains known solutions for the common exceptional cases that may cause changes in each construction domain. The ongoing research work presented in this paper uses the process modeling technique of Event-driven Process Chains to describe different patterns of structure changes in the schedule networks. This results in several so called “change templates”. Under each template different types of change risk/ response pairs can be categorized and stored in a knowledge base. This knowledge base is described as an ontology model populated with reference construction process data. The implementation of the developed approach can be seen as an iterative scheduling cycle that will be repeated within the project lifecycle as new change risks surface. This can help to check the availability of ready solutions in the knowledge base for the situation at hand. Moreover, if the solution is adopted, CPSP, “Change Project Schedule Plan „a prototype developed for the purpose of this research work, will be used to make the needed structure changes of the schedule network automatically based on the change template. What-If scenarios can be implemented using the CPSP prototype in the planning phase to study the effect of specific situations without endangering the success of the project objectives. Hence, better designed and more maintainable project schedules can be achieved.

The numerical simulation of microstructure models in 3D requires, due to enormous d.o.f., significant resources of memory as well as parallel computational power. Compared to homogeneous materials, the material hetrogeneity on microscale induced by different material phases demand for adequate computational methods for discretization and solution process of the resulting highly nonlinear problem. To enable an efficient/scalable solution process of the linearized equation systems the heterogeneous FE problem will be described by a FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) discretization. The fundamental FETI-DP equation can be solved by a number of different approaches. In our approach the FETI-DP problem will be reformulated as Saddle Point system, by eliminating the primal and Lagrangian variables. For the reduced Saddle Point system, only defined by interior and dual variables, special Uzawa algorithms can be adapted for iteratively solving the FETI-DP saddle-point equation system (FETI-DP SPE). A conjugate gradient version of the Uzawa algorithm will be shown as well as some numerical tests regarding to FETI-DP discretization of small examples using the presented solution technique. Furthermore the inversion of the interior-dual Schur complement operator can be approximated using different techniques building an adequate preconditioning matrix and therewith leading to substantial gains in computing time efficiency.

Quality is one of the most important properties of a product. Providing the optimal quality can reduce costs for rework, scrap, recall or even legal actions while satisfying customers demand for reliability. The aim is to achieve ``built-in'' quality within product development process (PDP). The common approach therefore is the robust design optimization (RDO). It uses stochastic values as constraint and/or objective to obtain a robust and reliable optimal design. In classical approaches the effort required for stochastic analysis multiplies with the complexity of the optimization algorithm. The suggested approach shows that it is possible to reduce this effort enormously by using previously obtained data. Therefore the support point set of an underlying metamodel is filled iteratively during ongoing optimization in regions of interest if this is necessary. In a simple example, it will be shown that this is possible without significant loss of accuracy.

The main aim of the research project in progress is to develop virtual models as tools to support decision-making in the planning of construction maintenance. The virtual models gives the capacity to allow them to transmit, visually and interactively, information related to the physical behaviour of materials, components of given infrastructures, defined as a function of the time variable. The interactive application allows decisions to be made on conception options in the definition of plans for maintenance, conservation or rehabilitation. The first virtual prototype that is now in progress concerns just lamps. It allows the examination of the physical model, visualizing, for each element modelled in 3D and linked to a database, the corresponding technical information concerned with the wear and tear aspects of the material, calculated for that period of time. In addition, the analysis of solutions for repair work or substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The aim is that the virtual model should be able to be applied directly over the 3D models of new constructions, in situations of rehabilitation. The practical usage of these models is directed, then, towards supporting decision-making in the conception phase and the planning of maintenance. In further work other components will be analysed and incorporated into the virtual system.

The changed global security situation in the last eight years has shown the importance of emergency management plans in public buildings. Therefore, the use of computer simulators for surveying fire safety design and evacuation process is increasing. The aim of these simulators is to have more realistic evacuation simulations. The challenge is, firstly, to realize the virtual simulation environment based on geometrical and material boundary conditions, secondly, to considerate the mutual interaction effects between different parameters and, finally, to have a realistic visualization of the simulated results. In order to carry out this task, an especial new software method on a BIM-platform has to be developed which can integrate all required simulations and will be able to have an immersive output BIM ISEE (Immersive Safety Engineering Environment). The new BIM-ISEE will integrate the Fire Dynamics Simulator (FDS) for fire and evacuation simulation in the Autodesk Revit which is a BIM-platform and will represent the simulation results in the immersive virtual environment at the institute (CES-Lab). With BIM-ISEE the fire safety engineer will be able to obtain more realistic visualizations in the immersive environment, to modify his concept more effectively, to evaluate the simulation results more accurately and to visualize the various simulation results. It can also give the rescue staff the opportunity to perform and evaluate emergency evacuation trainings.

We present the way of calculation of displacement in the bent reinforced concrete bar elements where rearrangement of internal forces and plastic hinge occurred. The described solution is based on prof. Borcz’s mathematical model. It directly takes into consideration the effects connected with the occurrence of plastic hinge, such as for example a crack, by means of a differential equation of axis of the bent reinforced concrete beam. The EN Eurocode 2 makes it possible to consider the influence of plastic hinge on the values of the reinforced concrete structures. This influence can also be assumed using other analytical methods. However, the results obtained by the application of Eurocode 2 are higher from those received in testing. Just comparably big error level occurs when calculations are made by means of Borcz’s method, but in the latter case, the results depend on the assumptions made beforehand. This method makes it possible to apply the experimental results using parameters r1 i r0. When the experimental results are taken into account, one could observe the compatibility between the calculations and actual deflections of the structure.

By the use of numerical methods and the rapid development of computer technology in the recent years, a large variety, complexity, refinement and capability of partial models have been achieved. This can be noticed in the evaluation of the reliability of structures, e.g. the increased use of spatial structural systems. For the different fields of civil engineering, well developed partial models already exist. Because these partial models are most often used separately, the general view is not entirely illustrated. Until now, there has been no common methodology for evaluating the efficiency of models; the trust in the prediction of a special engineering model has generally relied on the engineer’s experience. In this paper the basics of evaluation of simple models and coupled partial models of frame structures will be discussed using sustainable numerical methods. Furthermore, quality classes (levels) of design tasks will be defined based on their practical relevance. In addition, analysis methods will be systemized. After analysis of different published assessment methods, it may be noted, that the Efficiency Indicator Method (EWM) is most suitable for the observed evaluation problem. Therefore, the EWM was modified to the Model Efficiency Analysis (MEA) for the purpose of a holistic evaluation. The criteria are characterized by two groups, benefit and expenditure, and it is possible by calculating the quotient (benefit/expenditure) to make a statement about the efficiency of the observed models. Presently, the expenditure value is not a subject of investigation, and so the model efficiency is calculated only by the benefit value. This paper also contains the associated criteria catalog, different normalization methods, as well as weighting possibilities.

In the paper presented, reinforced concrete shells of revolution are analyzed in both meridional and circumferential directions. Taking into account the physical non-linearity of the material, the internal forces and the deflections of the shell as well as the strain distribution at the cross-sections are calculated. The behavior of concrete under compression is described by linear and non-linear stress-strain relations. The description of the behavior of concrete under tension must account for tension stiffening effects. A tri-linear function is used to formulate the material law of reinforcement. The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical solution is formulated by means of the LAGRANGE Principle of the minimum of the total potential energy. The kinematically admissible field of deformation is defined by the displacements u in the meridional and w in the radial direction. These displacements must satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The strains are linearly distributed across the wall thickness. The strain energy depends on the specific of the material behavior. Using integral formulations of the material law [1], the strain energy of each part of the cross-section is defined as a function of the strains at the boundaries of the cross-sections. The shell is discretised in the meridional direction. Various methods of numerical differentiation and numerical integration are applied in order to determine the deformations and the strain energy. The unknown displacements u and w are calculated by a non-restricted extremum problem based on the minimum of the total potential energy. From mathematical point of view, the objective function is a convex function, thus the minimum can be determined without difficulty. The advantage of this formulation is that unlike non-linear methods with path-following algorithms the calculation does not have to account for changing stiffness and load increments. All iterations necessary to find the solution are integrated into the “Solver”. The model presented provides many ways of investigating the influence of various material parameters on the stresses and deformations of the entire shell structure.

As numerical techniques for solving PDE or integral equations become more sophisticated, treatments of the generation of the geometric inputs should also follow that numerical advancement. This document describes the preparation of CAD data so that they can later be applied to hierarchical BEM or FEM solvers. For the BEM case, the geometric data are described by surfaces which we want to decompose into several curved foursided patches. We show the treatment of untrimmed and trimmed surfaces. In particular, we provide prevention of smooth corners which are bad for diffeomorphism. Additionally, we consider the problem of characterizing whether a Coons map is a diffeomorphism from the unit square onto a planar domain delineated by four given curves. We aim primarily at having not only theoretically correct conditions but also practically efficient methods. As for FEM geometric preparation, we need to decompose a 3D solid into a set of curved tetrahedra. First, we describe some method of decomposition without adding too many Steiner points (additional points not belonging to the initial boundary nodes of the boundary surface). Then, we provide a methodology for efficiently checking whether a tetrahedral transfinite interpolation is regular. That is done by a combination of degree reduction technique and subdivision. Along with the method description, we report also on some interesting practical results from real CAD data.

Nonlinear analyses are characterised by approximations of the fundamental equations in different quality. Starting with a general description of nonlinear finite element formulation the fundamental equations are derived for plane truss elements. Special emphasis is placed on the determination of internal and external system energy as well as influence of different quality approaches for the displacement-strain relationship on solution quality. To simplify the solution procedure the nonlinear function describing the kinematics is expanded into a Taylor series and truncated after the n-th series term. The different kinematics influence speed of convergence as well as exactness of solution. On a simple truss structure this influence is shown. To assess the quality of different formulations concerning the nonlinear kinematic equation three approaches are discussed. First the overall internal and external energy is compared for different kinematical models. In a second step the energy content related to single terms describing displacement-strain relationship is investigated and used for quality control following two different paths. Based on single ε-terms an adaptive scheme is used to change the kinematical model depending on increasing nonlinearity of the structure. The solution quality has turned out satisfactory compared to the exact result. More detailed investigations are necessary to find criteria for the threshold values for the iterative process as well as for decision on number and step size of incremental load steps.

A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.

In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.

FREE VIBRATION FREQUENCIES OF THE CRACKED REINFORCED CONCRETE BEAMS - METHODS OF CALCULATIONS
(2010)

The paper presents method of calculation of natural frequencies of the cracked reinforced concrete beams including discreet model of crack. The described method is based on the stiff finite elements method. It was modified in such a way as to take into account local discontinuities (ie. cracks). In addition, some theoretical studies as well as experimental tests of concrete mechanics based on discrete crack model were taken into consideration. The calculations were performed using the author’s own numerical algorithm. Moreover, other calculation methods of dynamic reinforced concrete beams presented in standards and guidelines are discussed. Calculations performed by using different methods are compared with the results obtained in experimental tests.

ESTIMATING UNCERTAINTIES FROM INACCURATE MEASUREMENT DATA USING MAXIMUM ENTROPY DISTRIBUTIONS
(2010)

Modern engineering design often considers uncertainties in geometrical and material parameters and in the loading conditions. Based on initial assumptions on the stochastic properties as mean values, standard deviations and the distribution functions of these uncertain parameters a probabilistic analysis is carried out. In many application fields probabilities of the exceedance of failure criteria are computed. The out-coming failure probability is strongly dependent on the initial assumptions on the random variable properties. Measurements are always more or less inaccurate data due to varying environmental conditions during the measurement procedure. Furthermore the estimation of stochastic properties from a limited number of realisation also causes uncertainties in these quantities. Thus the assumption of exactly known stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic measures in a design process. In this paper we assume the stochastic properties of a random variable as uncertain quantities caused by so-called epistemic uncertainties. Instead of predefined distribution types we use the maximum entropy distribution which enables the description of a wide range of distribution functions based on the first four stochastic moments. These moments are taken again as random variables to model the epistemic scatter in the stochastic assumptions. The main point of this paper is the discussion on the estimation of these uncertain stochastic properties based on inaccurate measurements. We investigate the bootstrap algorithm for its applicability to quantify the uncertainties in the stochastic properties considering imprecise measurement data. Based on the obtained estimates we apply standard stochastic analysis on a simple example to demonstrate the difference and the necessity of the proposed approach.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

A stress based remodeling approach is used to investigate the sensitivity of the collagen architecture in humane eye tissues on the biomechanical response of the lamina cribrosa with a particular focus on the stress environment of the nerve fibers. This approach is based on a multi-level biomechanical framework, where the biomechanical properties of eye tissues are derived from a single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous reorientation of collagen fibrils. To investigate the multi-scale phenomena related to glaucomatous neuropathy a generalized computational homogenization scheme is applied to a coupled two-scale analysis of the human eye considering a numerical macro- and meso-scale model of the lamina cribrosa.

In recent years special hypercomplex Appell polynomials have been introduced by several authors and their main properties have been studied by different methods and with different objectives. Like in the classical theory of Appell polynomials, their generating function is a hypercomplex exponential function. The observation that this generalized exponential function has, for example, a close relationship with Bessel functions confirmed the practical significance of such an approach to special classes of hypercomplex differentiable functions. Its usefulness for combinatorial studies has also been investigated. Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences. Here we show how this opens the way for a more systematic study of the relation between some classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.

The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter ‘T’. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the “undercut” beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.

There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression.

MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES
(2010)

Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions.

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it with the well-known facts of harmonic analysis and Clifford analysis. In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic analysis is illustrated by the Fisher decomposition and the Howe duality for the space of spinor-valued polynomials in the Euclidean space under the so-called L-action. On the other hand, for Clifford algebra valued polynomials, we can consider another action, called in Clifford analysis the H-action. In the last section, we recall the Fisher decomposition for the H-action obtained recently. As in Clifford analysis the prominent role plays the Dirac equation in this case the basic set of equations is formed by the Hodge system. Moreover, analysis of Hodge systems can be viewed even as a refinement of Clifford analysis. In this note, we describe the Howe duality for the H-action. In particular, in Proposition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as the Lie superalgebra sl(2 1). Furthermore, Theorem 2 gives the corresponding multiplicity free decomposition with an explicit description of irreducible pieces.

In this paper we present an inverse method which is capable of identifying system components in a hydro-mechanically coupled system, i.e. for fluid flow in porous media. As an example we regard water dams that were constructed more than hundred years ago but which are still in use. Over the time ageing processes have changed the condition of these dams. Within the dams fissures might have grown. The proposed method is designed to locate these fissures out of combined mechanical and hydraulic measurements. In a numerical example the fissures or damaged zones are described by a smeared crack model. The task is now to identify simultaneously the spatial distribution of Young’s modulus and the hydraulic permeability due to the fact, that in regions where damages are present, the mechanical stiffness of the system is reduced and the permeability increased. The inversion is shown to be an ill-posed problem. As a consequence regularizing methods have to be applied, where the nonlinear Landweber method (a gradient type method combined with a discrepancy principle) has proven to be an efficient choice.

For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.

In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus.

CONSTITUTIVE MODELS FOR SUBSOIL IN THE CONTEXT OF STRUCTURAL ANALYSIS IN CONSTRUCTION ENGINEERING
(2010)

Parameters of constitutive models are obtained generally comparing the results of forward numerical simulations to measurement data. Mostly the parameter values are varied by trial-and-error in order to reach an improved fit and obtain plausible results. However, the description of complex soil behavior requires advanced constitutive models where the rising complexity of these models mainly increases the number of unknown constitutive parameters. Thus an efficient identification "by hand" becomes quite difficult for most practical geotechnical problems. The main focus of this article is on finding a vector of parameters in a given search space which minimizes discrepancy between measurements and the associated numerical result. Classically, the parameter values are estimated from laboratory tests on small samples (triaxial tests or oedometer tests). For this purpose an automatic population-based approach is present to determine the material parameters for reconstituted and natural Bothkennar Clay. After the identification a statistical assessment is carried out of numerical results to evaluate different constitutive models. On the other side a geotechnical problem, stone columns under an embankment, is treated in a well instrumented field trial in Klagenfurt, Austria. For the identification purpose there are measurements from multilevel-piezometers, multilevel-extensometers and horizontal inclinometer. Based on the simulation of the stone columns in a FE-Model the identification of the constitutive parameters is similar to the experimental tests by minimizing the absolute error between measurement and numerical curves.

An energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS’s integral theorem. The total strain of each partition of the cross-section is split into load-dependent strain and pre-strain. Pre-strains have to be taken into account when the cross-section is pre-stressed, retrofit-ted or influenced by shrinkage, temperature etc. The unconstrained minimum problem can be solved for each load combination using standard software. The application of the method presented in the paper is demonstrated by means of examples.

Sand-bentonite mixtures are well recognized as buffer and sealing material in nuclear waste repository constructions. The behaviour of compacted sand-bentonite mixture needs to be well understood in order to guarantee the safety and the efficiency of the barrier construction. This paper presents numerical simulations of swelling test and coupled thermo-hydro-mechanical (THM) test on compacted sand-bentonite mixture in order to reveal the influence of the temperature and hydraulic gradients on the distribution of temperature, mechanical stress and water content in such materials. Sensitivity analysis is carried out to identify the parameters which influence the most the response of the numerical model. Results of back analysis of the model parameters are reported and critically assessed.

Geotechnical constructions are sophisticated structures due to the non-linear soil behaviour and the complex soil-structure interaction, which entails great exigencies on the liable engineer during the design process. The process can be schematised as a difficult and, depending on the opportunities and skills of the processor more or less innovative, creative and heuristic search for one or a multiple of defined objectives under given boundary conditions. Wholistic approaches including numerical optimisation which support the constructing engineer in this task do not currently exist. Abstract problem formulation is not state of the art; commonly parameter studies are bounded by computational effort. Thereby potential regarding cost effectiveness, construction time, load capacity and/or serviceability are often used insufficiently. This paper describes systematic approaches for comprehensive optimisation of selected geotechnical constructions like combined pile raft foundations and quay wall structures. Several optimisation paradigms like the mono- and the multi-objective optimisation are demonstrated and their use for a more efficient design concerning various intentions is shown in example. The optimisation is implemented by using Evolutionary Algorithms. The applicability to geotechnical real world problems including nonlinearities, discontinuities and multi-modalities is shown. The routines are adapted to common problems and coupled with conventional analysis procedures as well as with numerical calculation software based on the finite element method. Numerical optimisation of geotechnical design using efficient algorithms is able to deliver highly effective solutions after investing more effort into the parameterization of the problem. Obtained results can be used for realizing different constructions near the stability limit, visualizing the sensitivity regarding the construction parameters or simply procuring more effective solutions.

In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building’s requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access.

Tests on Polymer Modified Cement Concrete (PCC) have shown significant large creep deformation. The reasons for that as well as additional material phenomena are explained in the following paper. Existing creep models developed for standard concrete are studied to determine the time-dependent deformations of PCC. These models are: model B3 by Bažant and Bajewa, the models according to Model Code 90 and ACI 209 as well as model GL2000 by Gardner and Lockman. The calculated creep strains are compared to existing experimental data of PCC and the differences are pointed out. Furthermore, an optimization of the model parameters is performed to fit the models to the experimental data to achieve a better model prognosis.

The evident advances of the computational power of the digital computers enable the modeling of the total system of structures. Such modeling demands compatible representations of the couplings of different structural subsystems. Therefore, models of dynamic interaction between the vehicle and the bridge and models of a bridge bearing, a coupling element between the bridge's superstructure and substructure, are of interest and discussed within this paper. The vehicle-bridge interaction may be described as a function connecting two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect both systems, such as the frequency content of the bridge and the vehicle. Whereas the bridge bearings are elements used specifically to couple, in such elements the deformation and the transferred loads are used in characterizing the coupling The nature of these couplings and their influence on the bridge response is different. However, the need to assess the amount of dynamic response transferred by or within these couplings is a common argument.

NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE
(2010)

This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.

Several results concerning the distribution of the headway of busses in the flow behind a traffic signal are presented. In the main focus of interest is the description of analytical models, which are verified by the results of Monte-Carlo-Methods. The advantage of analytical models (verified, but not derived by simulation methods) is their flexibility with respect to possible generalizations. For instance, several random distributions of the flow incoming to the traffic signal can be compared. The attention will be directed at the question, how the primary headway H (analyzed in front of the traffic signal) is mapped to the headway H’ analyzed behind of the traffic signal and how the random distribution of H is mapped to that of H’. For the traffic flow in front of the traffic signal several models will be discussed. The first case considers the situation, that busses operate on a common lane with the individual motor car traffic and the traffic flow is saturated. In the second situation, busses operate on a separated bus lane. Moreover, a mixed situation is discussed to model as close to reality as possible.

Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed.

In this paper three different formulations of a Bernoulli type free boundary problem are discussed. By analyzing the shape Hessian in case of matching data it is distinguished between well-posed and ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for discretizing the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second order shape optimization algorithms are obtained.

Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail.

The present article proposes an alternative way to compute the torsional stiffness based on three-dimensional continuum mechanics instead of applying a specific theory of torsion. A thin, representative beam slice is discretized by solid finite elements. Adequate boundary conditions and coupling conditions are integrated into the numerical model to obtain a proper answer on the torsion behaviour, thus on shear center, shear stress and torsional stiffness. This finite element approach only includes general assumptions of beam torsion which are independent of cross-section geometry. These assumptions essentially are: no in-plane deformation, constant torsion and free warping. Thus it is possible to achieve numerical solutions of high accuracy for arbitrary cross-sections. Due to the direct link to three-dimensional continuum mechanics, it is possible to extend the range of torsion analysis to sections which are composed of different materials or even to heterogeneous beams on a high scale of resolution. A brief study follows to validate the implementation and results are compared to analytical solutions.

Using a quaternionic reformulation of the electrical impedance equation, we consider a two-dimensional separable-variables conductivity function and, posing two different techniques, we obtain a special class of Vekua equation, whose general solution can be approach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit Bers generating sequence.

In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method.

Reducing energy consumption is one of the major challenges for present day and will continue for future generations. The emerging EU directives relating to energy (EU EPBD and the EU Directive on Emissions Trading) now place demands on building owners to rate the energy performance of their buildings for efficient energy management. Moreover European Legislation (Directive 2006/32/EC) requires Facility Managers to reduce building energy consumption and operational costs. Currently sophisticated building services systems are available integrating off-the-shelf building management components. However this ad-hoc combination presents many difficulties to building owners in the management and upgrade of these systems. This paper addresses the need for integration concepts, holistic monitoring and analysis methodologies, life-cycle oriented decision support and sophisticated control strategies through the seamless integration of people, ICT-devices and computational resources via introducing the newly developed integrated system architecture. The first concept was applied to a residential building and the results were elaborated to improve current building conditions.

Buildings can be divided into various types and described by a huge number of parameters. Within the life cycle of a building, especially during the design and construction phases, a lot of engineers with different points of view, proprietary applications and data formats are involved. The collaboration of all participating engineers is characterised by a high amount of communication. Due to these aspects, a homogeneous building model for all engineers is not feasible. The status quo of civil engineering is the segmentation of the complete model into partial models. Currently, the interdependencies of these partial models are not in the focus of available engineering solutions. This paper addresses the problem of coupling partial models in civil engineering. According to the state-of-the-art, applications and partial models are formulated by the object-oriented method. Although this method solves basic communication problems like subclass coupling directly it was found that many relevant coupling problems remain to be solved. Therefore, it is necessary to analyse and classify the relevant coupling types in building modelling. Coupling in computer science refers to the relationship between modules and their mutual interaction and can be divided into different coupling types. The coupling types differ on the degree by which the coupled modules rely upon each other. This is exemplified by a general reference example from civil engineering. A uniform formulation of coupling patterns is described analogously to design patterns, which are a common methodology in software engineering. Design patterns are templates for describing a general reusable solution to a commonly occurring problem. A template is independent of the programming language and the operating system. These coupling patterns are selected according to the specific problems of building modelling. A specific meta-model for coupling problems in civil engineering is introduced. In our meta-model the coupling patterns are a semantic description of a specific coupling design.

An introduction is given to Clifford Analysis over pseudo-Euclidean space of arbitrary signature, called for short Ultrahyperbolic Clifford Analysis (UCA). UCA is regarded as a function theory of Clifford-valued functions, satisfying a first order partial differential equation involving a vector-valued differential operator, called a Dirac operator. The formulation of UCA presented here pays special attention to its geometrical setting. This permits to identify tensors which qualify as geometrically invariant Dirac operators and to take a position on the naturalness of contravariant and covariant versions of such a theory. In addition, a formal method is described to construct the general solution to the aforementioned equation in the context of covariant UCA.

SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS
(2010)

After mixing of concrete, the hardening starts by an exothermic chemical reaction known as hydration. As the reaction rate depends on the temperature the time in the description of the hydration is replaced by the maturity which is defined as an integral over a certain function depending on the temperature. The temperature distribution is governed by the heat equation with a right hand side depending on the maturity and the temperature itself. We compare of the performance of different time integration schemes of higher order with an automatic time step control. The simulation of the heat distribution is of importance as the development of mechanical properties is driven by the hydration. During this process it is possible that the tensile stresses exceed the tensile strength and cracks occur. The goal is to produce cheap concrete without cracks. Simple crack-criterions use only temperature differences, more involved ones are based on thermal stresses. If the criterion predicts cracks some changes in the input data are needed. This can be interpreted as optimization. The final goal will be to adopt model based optimization (in contrast to simulation based optimization) to the problem of the hydration of young concrete and the avoidance of cracks. The first step is the simulation of the hydration, which we focus in this paper.

In nonlinear simulations the loading is, in general, applied in an incremental way. Path-following algorithms are used to trace the equilibrium path during the failure process. Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this contribution, a path-following algorithm based on the dissipation of the inelastic energy is presented which allows for the simulation of snap-backs. Since the constraint is defined in terms of the internal energy, the algorithm is not restricted to continuum damage models. Furthermore, no a priori knowledge about the final damage distribution is required. The performance of the proposed algorithm is illustrated using nonlinear mesoscale simulations.

NONZONAL WAVELETS ON S^N
(2010)

In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on $S^n$, which we obtain from the approximate identity of Gauss-Weierstraß.

This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation.

THE FOURIER-BESSEL TRANSFORM
(2010)

In this paper we devise a new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced earlier. We show that this new integral transform satisfies operational formulae which are similar to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consisting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform.

In the past, several types of Fourier transforms in Clifford analysis have been studied. In this paper, first an overview of these different transforms is given. Next, a new equation in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of generalized Fourier transforms. Two solutions of this equation are studied in more detail, namely a vector-valued solution and a bivector-valued solution, as well as the associated integral transforms.

MICROPLANE MODEL WITH INITIAL AND DAMAGE-INDUCED ANISOTROPY APPLIED TO TEXTILE-REINFORCED CONCRETE
(2010)

The presented material model reproduces the anisotropic characteristics of textile reinforced concrete in a smeared manner. This includes both the initial anisotropy introduced by the textile reinforcement, as well as the anisotropic damage evolution reflecting fine patterns of crack bridges. The model is based on the microplane approach. The direction-dependent representation of the material structure into oriented microplanes provides a flexible way to introduce the initial anisotropy. The microplanes oriented in a yarn direction are associated with modified damage laws that reflect the tension-stiffening effect due to the multiple cracking of the matrix along the yarn.

The application of a recent method using formal power series is proposed. It is based on a new representation for solutions of Sturm-Liouville equations. This method is used to calculate the transmittance and reflectance coefficients of finite inhomogeneous layers with high accuracy and efficiency. Tailoring the refraction index profile defining the inhomogeneous media it is possible to develop very important applications such as optical filters. A number of profiles were evaluated and then some of them selected in order to perform an improvement of their characteristics via the modification of their profiles.

A UNIFIED APPROACH FOR THE TREATMENT OF SOME HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS ON SPHERES
(2010)

Using Clifford analysis methods, we provide a unified approach to obtain explicit solutions of some partial differential equations combining the n-dimensional Dirac and Euler operators, including generalizations of the classical time-harmonic Maxwell equations. The obtained regular solutions show strong connections between hypergeometric functions and homogeneous polynomials in the kernel of the Dirac operator.

In the context of finite element model updating using vibration test data, natural frequencies and mode shapes are used as validation criteria. Consequently, the order of natural frequencies and mode shapes is important. As only limited spatial information is available and noise is present in the measurements, the automatic selection of the most likely numerical mode shape corresponding to a measured mode shape is a difficult task. The most common criterion to indicate corresponding mode shapes is the modal assurance criterion. Unfortunately, this criterion fails in certain cases. In this paper, the pure mathematical modal assurance criterion will be enhanced by additional physical information of the numerical model in terms of modal strain energies. A numerical example and a benchmark study with real measured data are presented to show the advantages of the enhanced energy based criterion in comparison to the traditional modal assurance criterion.

Euclidean Clifford analysis is a higher dimensional function theory offering a refinement of classical harmonic analysis. The theory is centered around the concept of monogenic functions, i.e. null solutions of a first order vector valued rotation invariant differential operator called the Dirac operator, which factorizes the Laplacian. More recently, Hermitean Clifford analysis has emerged as a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case; it focusses on the simultaneous null solutions, called Hermitean (or h-) monogenic functions, of two Hermitean Dirac operators which are invariant under the action of the unitary group. In Euclidean Clifford analysis, the Clifford-Cauchy integral formula has proven to be a corner stone of the function theory, as is the case for the traditional Cauchy formula for holomorphic functions in the complex plane. Previously, a Hermitean Clifford-Cauchy integral formula has been established by means of a matrix approach. This formula reduces to the traditional Martinelli-Bochner formula for holomorphic functions of several complex variables when taking functions with values in an appropriate part of complex spinor space. This means that the theory of Hermitean monogenic functions should encompass also other results of several variable complex analysis as special cases. At present we will elaborate further on the obtained results and refine them, considering fundamental solutions, Borel-Pompeiu representations and the Teoderescu inversion, each of them being developed at different levels, including the global level, handling vector variables, vector differential operators and the Clifford geometric product as well as the blade level were variables and differential operators act by means of the dot and wedge products. A rich world of results reveals itself, indeed including well-known formulae from the theory of several complex variables.

In this paper the influence of changes in the mean wind velocity, the wind profile power-law coefficient, the drag coefficient of the terrain and the structural stiffness are investigated on different complex structural models. This paper gives a short introduction to wind profile models and to the approach by Davenport A. G. to compute the structural reaction of wind induced vibrations. Firstly with help of a simple example (a skyscraper) this approach is shown. Using this simple example gives the reader the possibility to study the variance differences when changing one of the above mentioned parameters on this very easy example and see the influence of different complex structural models on the result. Furthermore an approach for estimation of the needed discretization level is given. With the help of this knowledge the structural model design methodology can be base on deeper understanding of the different behavior of the single models.

Models in the context of engineering can be classified in process based and data based models. Whereas the process based model describes the problem by an explicit formulation, the data based model is often used, where no such mapping can be found due to the high complexity of the problem. Artificial Neuronal Networks (ANN) is a data based model, which is able to “learn“ a mapping from a set of training patterns. This paper deals with the application of ANN in time dependent bathymetric models. A bathymetric model is a geometric representation of the sea bed. Typically, a bathymetry is been measured and afterwards described by a finite set of measured data. Measuring at different time steps leads to a time dependent bathymetric model. To obtain a continuous surface, the measured data has to be interpolated by some interpolation method. Unlike the explicitly given interpolation methods, the presented time dependent bathymetric model using an ANN trains the approximated surface in space and time in an implicit way. The ANN is trained by topographic measured data, which consists of the location (x,y) and time t. In other words the ANN is trained to reproduce the mapping h = f(x,y,t) and afterwards it is able to approximate the topographic height for a given location and date. In a further step, this model is extended to take meteorological parameters into account. This leads to a model of more predictive character.

From passenger’s perspective, punctuality is one of the most important features of tram route operation. We present a stochastic simulation model with special focus on determining important factors of influence. The statistical analysis bases on large samples (sample size is nearly 2000) accumulated from comprehensive measurements on eight tram routes in Cracow. For the simulation, we are not only interested in average values but also in stochastic characteristics like the variance and other properties of the distribution. A realization of trams operations is assumed to be a sequence of running times between successive stops and times spent by tram at the stops divided in passengers alighting and boarding times and times waiting for possibility of departure . The running time depends on the kind of track separation including the priorities in traffic lights, the length of the section and the number of intersections. For every type of section, a linear mixed regression model describes the average running time and its variance as functions of the length of the section and the number of intersections. The regression coefficients are estimated by the iterative re-weighted least square method. Alighting and boarding time mainly depends on type of vehicle, number of passengers alighting and boarding and occupancy of vehicle. For the distribution of the time waiting for possibility of departure suitable distributions like Gamma distribution and Lognormal distribution are fitted.

We investigate aspects of tram-network section reliability, which operates as a part of the model of whole city tram-network reliability. Here, one of the main points of interest is the character of the chronological development of the disturbances (namely the differences between time of departure provided in schedule and real time of departure) on subsequent sections during tram line operation. These developments were observed in comprehensive measurements done in Krakow, during one of the main transportation nodes (Rondo Mogilskie) rebuilding. All taken building activities cause big disturbances in tram lines operation with effects extended to neighboring sections. In a second part, the stochastic character of section running time will be analyzed more detailed. There will be taken into consideration sections with only one beginning stop and also with two or three beginning stops located at different streets at an intersection. Possibility of adding results from sections with two beginning stops to one set will be checked with suitable statistical tests which are used to compare the means of the two samples. Section running time may depend on the value of gap between two following trams and from the value of deviation from schedule. This dependence will be described by a multi regression formula. The main measurements were done in the city center of Krakow in two stages: before and after big changes in tramway infrastructure.

We give a sufficient and a necessary condition for an analytic function "f" on the unit disk "D" with Hadamard gap to belong to a class of weighted logarithmic Bloch space as well as to the corresponding little weighted logarithmic Bloch space under some conditions posed on the defined weight function. Also, we study the relations between the class of weighted logarithmic Bloch functions and some other classes of analytic functions by the help of analytic functions in the Hadamard gap class.

Nach dem aufgeregten Palaver um den Computer als 'Medium' und die akademische Begleitrhetorik zum Internet wird erneut die Frage nach der Leistung von Medienphilosophie gestellt - in diesem Beitrag als medienanthropologische Vergewisserung: welche technischen Überschreitungen definieren das Neue unserer Lage?

Complex buildings and other structures are cumulatively planned with software that supports the export of building information in the STEP-format on the basis of the IFC (Industry Foundation Classes). Because of the availability of this interface, it is possible to use the data of a building for further processing.
Within the IFC, several geometrical models for the visualization of building elements are provided. Among others, geometric Boolean set operations are needed to "subtract" openings from building elements (e.g. for windows or doors) - CSG (Constructive Solid Geometry).
Therefore, software components based on the algorithms [Laidlaw86] and [Hubbard90] were developed at the professorship Informatik im Bauwesen that support these functionalities on the basis of Java3D. However, it turned out in praxis, that these components are numerically instable and that there is no acceptable robustness or tolerance of errors. This is caused by mistakes in the implementation (bugs) as well as the insufficient handling of numerical inaccuracies. Further, a verification and, where applicable, a correction of qualitative substandard initial data is missing.
Prior to this student research project, the implementation of a self-contained application for a visual error control was initiated. This tool visualizes several program steps and their corresponding data. With use of this tool, the implemented algorithms can be analyzed in detail.
The papers [Laidlaw86] and [Hubbard90] are unsatisfactory describing some essential steps of the algorithm as well as implementation details to execute Boolean set operations on the basis of a B-rep (Boundary Representation) model. Hence, the algorithm should be documented comprehensible with the help of figures and pseudo code. Moreover, problems within the existing implementation shall be identified and possible solution strategies shall be provided.

Die Planung von komplexen Bauwerken erfolgt zunehmend mit Planungswerkzeugen, die den Export von Bauwerksinformationen im STEP-Format auf Grundlage der IFC (Industry Foundation Classes) erlauben. Durch die Verfügbarkeit dieser Schnittstelle ist es möglich, Bauwerksinformationen für die weiterführende Verarbeitung zu verwenden. Zur Visualisierung der geometrischen Daten stehen innerhalb der IFC verschiedene geometrische Modelle für die Darstellung von Bauteilen zur Verfügung. Unter anderem werden für das „Ausschneiden“ von Öffnungen aus Bauteilen (z.B. für Fenster und Türen) geometrische boolesche Operationen benötigt.
Gegenstand des Beitrags ist die Vorstellung eines Algorithmus zur Berechnung von booleschen Operationen auf Basis eines triangulierten B-Rep (Boundary Representation) Modells nach HUBBARD (1990). Da innerhalb von IFC-Gebäudemodellen Bauteile oft das Resultat mehrerer boolescher Operationen sind (z.B. um mehrere Fensteröffnungen von einer gegebenen Wand abzuziehen), wurde der Algorithmus von Hubbard angepasst, sodass mehrere boolesche Operationen gleichzeitig berechnet werden können. Durch diese Optimierung wird eine deutliche Reduzierung der benötigten Berechnungen und somit der Rechenzeit erreicht.

Der inhaltlichen Qualitätssicherung von Bauwerksinformationsmodellen (BIM) kommt im Zuge einer stetig wachsenden Nutzung der verwendeten BIM für unterschiedliche Anwen-dungsfälle eine große Bedeutung zu. Diese ist für jede am Datenaustausch beteiligte Software dem Projektziel entsprechend durchzuführen. Mit den Industry Foundation Classes (IFC) steht ein etabliertes Format für die Beschreibung und den Austausch eines solchen Modells zur Verfügung. Für den Prozess der Qualitätssicherung wird eine serverbasierte Testumgebung Bestandteil des neuen Zertifizierungsverfahrens der IFC sein. Zu diesem Zweck wurde durch das „iabi - Institut für angewandte Bauinformatik” in Zusammenarbeit mit „buildingSMART e.V.“ (http://www.buildingsmart.de) ein Global Testing Documentation Server (GTDS) implementiert. Der GTDS ist eine, auf einer Datenbank basierte, Web-Applikation, die folgende Intentionen verfolgt:
• Bereitstellung eines Werkzeugs für das qualitative Testen IFC-basierter Modelle
• Unterstützung der Kommunikation zwischen IFC Entwicklern und Anwendern
• Dokumentation der Qualität von IFC-basierten Softwareanwendungen
• Bereitstellung einer Plattform für die Zertifizierung von IFC Anwendungen
Gegenstand der Arbeit ist die Planung und exemplarische Umsetzung eines Werkzeugs zur interaktiven Visualisierung von Qualitätsdefiziten, die vom GTDS im Modell erkannt wurden. Die exemplarische Umsetzung soll dabei aufbauend auf den OPEN IFC TOOLS (http://www.openifctools.org) erfolgen.

From 7 till 9 July 2009, the 18th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering is going to take place at the Bauhaus University Weimar. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences to report on their results in research, development and practice and to discuss. The conference offers several topics. Plenary lectures and thematic sessions will take place under the chairmanship of the mentioned colleagues.
We invite architects, civil engineers, designers, computer scientists, engineers, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference.

In der vorliegenden Arbeit wird eine kraftschlüssige Verbindungstechnik für modulare, schalenartige Faserverbundbauteile vorgestellt. Die Verbindung basiert auf der Verklebung mit lokal begrenzten Stahlblechen. Aus dem Verbindungsansatz wird die Verklebung zwischen Stahl und Faserverbundkunststoff vertiefend betrachtet. Ziel sind die Wahl von technologischen Randbedingungen, die Erarbeitung eines Vorschlages zur numerischen Berechnung und Bemessung und die Formulierung konstruktiver Empfehlungen zum Entwurf von Verklebungen. Mechanische Kennwerte werden in Zugversuchen ermittelt und direkt auf die nichtlinearen Berechnungen übertragen. Technologische Einflüsse und die Streuungen aus realen Verklebungen werden über die Nachrechnung von Zugscherversuchen in die Bemessung integriert. Es wird gezeigt, dass die Verklebungen ausreichende Festigkeiten und ein zufriedenstellendes Bruchverhalten aufweisen. Die Kombination aus einer Werkstattverklebung und einer baustellengerechten Montage ermöglicht eine materialgerechte und effiziente Verbindungen für Faserverbundkonstruktionen unter den Randbedingungen des Bauwesens.

On the mechanisms of shrinkage reducing admixtures in self con-solidating mortars and concretes
(2010)

Self Consolidating Concrete – a dream has come true!(?) Self Consolidating Concrete (SCC) is mainly characterised by its special rheological properties. With-out any vibration this concrete can be placed and compacted under its own weight, without segrega-tion or bleeding. The use of such concrete can increase the productivity on construction sites and en-able the use of a higher degree of well distributed reinforcement for thin walled structural members. This new technology also reduces health risks since in contrast to the traditional handling of concrete, the emission of noise and vibration are substantially decreased. The specific mix design for self consolidating concretes was introduced around the 1980s in Japan. In comparison to normal vibrated concrete an increased paste volume enables a good distribution of aggregates within the paste matrix, minimising the influence of aggregates friction on the concrete flow property. The introduction of inert and/or pozzolanic additives as part of the paste provides the required excess paste volume without using disproportionally high amounts of plain cement. Due to further developments of concrete admixtures such as superplasticizers, the cement paste can gain self levelling properties without causing segregation of aggregates. Whereas SCC differs from normal vibrated concrete in its fresh attributes, it should reach similar properties in the hardened state. Due to the increased paste volume it usually shows higher shrinkage. Furthermore, owing to strength requirements, SCC is often produced at low water to cement ratios and hence may additionally suffer from autogenous shrinkage. This means that cracking caused by drying or autogenous shrinkage is a real risk for SCC and can compromise its durability as cracks may serve as ingression paths for gases and salts or might permit leaching. For the time being SCC still exhibits increased shrinkage and cracking probability and hence may be discarded in many practical applications. This can be overcome by a better understanding of those mechanisms and the ways to mitigate them. It is a target of this thesis to contribute to this. How to cope with increased shrinkage of SCC? In general, engineers are facing severe problems related to shrinkage and cracking. Even for normal and high performance concrete, containing moderate amounts of binder, a lot of effort was put on counteracting shrinkage and avoiding cracking. For the time being these efforts resulted in the knowledge of how to distribute cracks rather to avoid them. The most efficient way to decrease shrinkage turned out to be to decrease the cement content of concrete down to a minimum but still sufficient amount. For SCC this obviously seems to be contradictory with the requirement of a high paste volume. Indeed, the potential for shrinkage reduction is limited to some small range modifications in the mix design following two major concepts. The first one is the reduction of the required paste volume by optimising the aggregate grading curve. The second one involves high volume substitution of cement, preferentially using inert mineral additives. The optimization of grading curves is limited by several severe practical issues. Problems start with the availability of sufficiently fractionated aggregates. Usually attempts fail because of the enormous effort in composing application-optimized grading curves or mix designs. Due to durability reasons, the substitution rate for cement is limited depending on the application purpose and on environmental exposure of the hardened concrete. In the early 1980s Shrinkage Reducing Admixtures (SRA) were introduced to counteract drying shrinkage of concrete. The first publications explicitly dealing with SRA go back to Goto and Sato (Japan). They were published in 1983, which is also the time when the SCC concept was introduced. SRA modified concretes showed a substantial reduction of free drying shrinkage contributing to crack prevention or at least a significant decrease of crack width in situations of restrained drying shrinkage. Will shrinkage reducing admixtures contribute to a broader application of SCC? Within the last three decades performance tests on several types of concrete proved the efficiency of shrinkage reducing admixtures. So, at least in terms of shrinkage and cracking, concretes in general and SCC in particular can benefit from SRA application. But "One man's meat is another man's poison" and with respect to long term performance of SRA modified concretes there are still several issues to be clarified. One of these concerns the impact of SRAs on cement hydration. It is therefore an issue to know if changes in the hydrated phase composition, induced by SRA, result in undesired properties or decreased durability. Another issue is that the long term shrinkage reduction has to be evaluated. For example, one can wonder if SRA leaching may diminish or even eliminate long term shrinkage reduction and if the release of admixtures could be a severe environmental issue. It should also be noted that the basic mechanism or physical impact of SRA as well as its implementation in recent models for shrinkage of concrete is still being discussed. The present thesis tries to shed light on the role of SRA in self consolidating concrete focusing on the three questions outlined above: basic mechanisms of cement hydration, physical impact on shrinkage and the sustainability of SRA-application. Which contributions result from this study? Based on an extensive patent search, commercial SRAs could be identified to be synergistic mixtures of non-ionic surfactants and glycols. This turns out to be most important information for more than one reason and is the subject of chapter 4. An abundant literature focuses on properties of these non-ionic surfactants. Moreover, from this rich pool of information, the behaviour of SRAs and their interactions in cementitious systems were better understood through this thesis. For example, it could be anticipated how SRAs behave in strong electrolytes and how surface activity, i.e. surface tension, and interparticle forces might be affected. The synergy effect regarding enhanced performance induced by the presence of additional glycol in SRAs could be derived from the literature on the co-surfactant nature of glycols. Generally it now can be said that glycols ensure that the non-ionic surfactant is properly distributed onto the paste interfaces to efficiently reduce surface tension. In literature, the impact of organic matter on cement hydration was extensively studied for other admixtures like superplasticizer. From there, main impact factors related to the nature of these molecules could be identified. In addition, here again, the literature on non-ionic surfactants provides sufficient information to anticipate possible interactions of SRA with cement hydration based on the nature of non-ionic surfactants. All in all, the extensive study on the nature of non-ionic surfactants, presented in chapter 4, provides fundamental understanding of the behaviour of SRAs in cement paste. Taking a step further to relate this to the impact on drying and shrinkage required to review recent models for drying and shrinkage of cement paste as presented in chapter 3. There, it is shown that macroscopic thermodynamics of the open pore systems can be successfully applied to predict drying induced deformation, but that surface activity of SRA still has to be implemented to explain the shrinkage reduction it causes. Because of severe issues concerning the importance of capillary pressure on shrinkage, a new macroscopic thermodynamic model was derived in a way that meets requirements to properly incorporate surface activity of SRA. This is the subject of chapter 5. Based on theoretical considerations, in chapter 5 the broader impact of SRA on drying cementitious matter could be outlined. In a next step, cement paste was treated as a deformable, open drying pore system. Thereby, the drying phenomena of SRA modified mortars and concrete observed by other authors could be retrieved. This phenomenological consistency of the model constitutes an important contribution towards the understanding of SRA mechanisms. Another main contribution of this work came from introducing an artificial pore system, denominated the normcube. Using this model system, it could be shown how the evolution of interfacial area and its properties interact in presence of SRAs and how this impacts drying characteristics. In chapter 7, the surface activity of commercial SRAs in aqueous solution and synthetic pore solution was investigated. This shows how the electrolyte concentration of synthetic pore solution impacts the phase behaviour of SRA and conversely, how the presence of SRA impacts the aqueous electrolyte solution. Whilst electrolytes enhance self-aggregation of SRAs into micelles and liquid crystals, the presence of SRAs leads to precipitation of minerals as syngenite and mirabilite. Moreover, electrolyte solutions containing SRAs comprise limited miscibility or rather show miscibility gaps, where the liquid separates into isotropic micellar solutions and surfactant rich reverse micellar solutions. The investigation of surface activity and phase behaviour of SRA unravelled another important contribution. From macroscopic surface tension measurements, a relationship between excess surface concentration of SRA, bulk concentration of SRA and exposed interfacial area could be derived. Based on this, it is now possible to predict the actual surface tension of the pore fluid in the course of drying once the evolution of internal interfacial area is known. This is used later in this thesis to describe the specific drying and shrinkage behaviour of SRA modified pastes and mortars. Calorimetric studies on normal Portland cement and composite binders revealed that SRA alone show only minor impact on hydration kinetics. In presence of superplasticizer however the cement hydration can be significantly decelerated. The delaying impact of SRA could be related to a selective deceleration of silicate phase hydration. Moreover, it could be shown that portlandite precipitation in presence of SRA is changed, turning the compact habitus into more or less layered structures. Thereby, the specific surface increases, causing the amount of physically bound water to increase, which in turn reduces the maximum degree of hydration achievable for sealed systems. Extensive phase analysis shows that the hydrated phase composition of SRA modified binders re-mains almost unaffected. The appearance of a temporary mineral phase could be detected by environmental scanning electron microscopy. As could be shown for synthetic pore solutions, syngenite precipitates during early hydration stages and is later consumed in the course of aluminate hydration, i.e. when sulphates are depleted. Moreover, for some SRAs, the salting out phenomena supposed to be enhanced in strong electrolytes could also be shown to take place. The resulting organic precipitates could be identified by SEM-EDX in cement paste and by X-ray diffraction on solid residues of synthetic pore solution. The presence of SRAs could also be identified to impact microstructure of well cured cement paste. Based on nitrogen adsorption measurements and mercury intrusion porosimetry the amount of small pores is seen to increase with SRA dosage, whilst the overall porosity remains unchanged. The question regarding sustainability of SRA application is the subject of chapter 10. By means of leaching studies it could be shown that SRA can be leached significantly. The mechanism could be identified as a diffusion process and a range of effective diffusion coefficients could be estimated. Thereby, the leaching of SRA can now be estimated for real structural members. However, while the admixture can be leached to high extents in tank tests, the leaching rates in practical applications can be assumed to be low because of much reduced contact with water. This could be proven by quantifying admixture loss during long term drying and rewetting cycles. Despite a loss of admixture shrinkage reduction is hardly impacted. Moreover, the cyclic tests revealed that the total deformations in presence of SRA remain low due to a lower extent of irreversibly shrinkage deformations. Another important contribution towards the better understanding of the working mechanism of SRA for drying and shrinkage came from the same leaching tests. A significant fraction of SRA is found to be immobile and does not diffuse in leaching. This fraction of SRA is probably strongly associated to cement phases as the calcium-silicate-hydrates or portlandite. Based on these findings, it is now also possible to quantify the amount of admixture active at the interfaces. This means that, the evolution of surface tension in the course of drying can be approximated, which is a fundamental requirement for modeling shrinkage in presence of SRA. The last experimental chapter of this study focuses on the working mechanism and impact of SRA on drying and shrinkage. Based on the thermodynamics of the open deformable pore system introduced in chapter 5, energy balances are set up using desorption and shrinkage isotherms of actual samples. Information on distribution of SRA in the hydrated paste is used to estimate the actual surface tensions of the pore solution. In other words, this is the first time that the surface activity of the SRA in the course of the drying is fully accounted for. From the energy balances the evolution and properties of the internal interface are then obtained. This made it possible to explain why SRAs impact drying and shrinkage and in what specific range of relative humidity they are active. Summarising the findings of this thesis it can be said that the understanding of the impact of SRAs on hydration, drying and shrinkage was brought forward. Many of the new insights came from the careful investigation of the theory of non-ionic surfactants, something that the cement community had generally overlooked up to now.

Verkehrsmengenrisiko bei PPP-Projekten im Straßensektor - Determinanten effizienter Risikoallokation
(2010)

Trotz weltweit umfangreichen Erfahrungen mit Public Private Partnership Projekten im Straßensektor bleibt der Umgang mit dem Verkehrsmengenrisiko für die Projektbeteiligten eine Herausforderung. Die Arbeit widmet sich daher der wesentlichen Fragestellung nach einer effizienten Allokation dieses Risikos, dem nicht weniger Bedeutung zukommt als für den gesamtwirtschaftlichen Erfolg eines Straßenkonzessionsprojektes eine entscheidende Rolle zu spielen. Untersucht werden zunächst die Charakteristika des Verkehrsmengenrisikos mit seinen umfänglichen Einflussfaktoren. Anschließend werden die in der Praxis zur Anwendung kommenden Vertragsmodelle zur Bewirtschaftung von Straßeninfrastruktur dargestellt und analysiert, wie in den einzelnen Modellen Verkehrsmengenrisiko auf die verschiedenen Vertragspartner verteilt wird. Auf Basis dieser Grundlagen wird ein kriteriengestützter Analyserahmen entwickelt, der die Effizienz unterschiedlicher Risikoallokationen zwischen den Vertragspartner bewertet. Dabei werden einerseits die effizienzbeeinflussenden Eigenschaften der potentiellen Risikoträger eines PPP-Projektes berücksichtigt als auch die die effizienzbeeinflussenden Wirkungen der unterschiedlichen Vertragsmodelle. Aus den Erkenntnissen dieser Analyse werden letztlich Handlungs- und Gestaltungsempfehlungen zum Umgang mit dem Verkehrsmengenrisiko abgeleitet.

Digitale Lesezeichen, Volltextsuche und Multimedia-Inhalte – die Ende des 20. Jahrhunderts durch das Internet ausgelöste Medienrevolution ließ auch das Buch nicht unberührt. Die Verbreitung des World Wide Webs parallel zur rasanten Entwicklung der Computertechnologie ermöglichte die Digitalisierung des Buches und bildete das E-Book als neue Publikationsform heraus. Seit etwa zehn Jahren können Bücher nicht mehr nur gedruckt, sondern auch elektronisch zur Verfügung gestellt werden, was für die Buchbranche und den Leser einige Veränderungen bedeutet. Moderne Lesegeräte, auch E-Reader genannt, erlauben die Speicherung einer ganzen Bibliothek auf einem einzigen mobilen Endgerät. Dabei steht das einzelne E-Book dem gedruckten Buch in seiner Lesequalität in nichts nach und ermöglicht zudem das Einfügen elektronischer Notizen und Lesezeichen, die Volltextsuche nach bestimmten Wörtern und die Verbindung von Text mit Bild, Ton und Video. Dennoch kann das E-Book seit seinem Aufkommen in Deutschland noch keine Erfolgsgeschichte schreiben. Insbesondere hohe Preise für die Lesegeräte halten immer noch viele Leser vom Nutzen der E-Books ab. Zu sehr ist das gedruckte Buch für zahlreiche Menschen noch fester Bestandteil ihres alltäglichen Lebens, als das sie es bereits durch das E-Book austauschen würden. Eine Situation, die einige Fragen aufwirft: Wird sich das EBook als Medium durchsetzen und das gedruckte Buch langfristig ablösen? Kann das EBook neben Zeitung, Radio, Fernsehen und Buch überhaupt als ein neues Medium verstanden werden? Und welche Veränderungen würde die massenhafte Verbreitung elektronischer Bücher mit sich bringen?

Im vorliegenden Beitrag wird ein Framework für ein verteiltes dynamisches Produktmodell (FREAC) vorgestellt, welches der experimentellen Softwareentwicklung dient. Bei der Entwicklung von FREAC wurde versucht, folgende Eigenschaften umzusetzen, die bei herkömmlichen Systemen weitgehend fehlen: Erstens eine hohe Flexibilität, also eine möglichst hohe Anpassbarkeit für unterschiedliche Fachdisziplinen; Zweitens die Möglichkeit, verschiedene Tools nahtlos miteinander zu verknüpfen; Drittens die verteilte Modellbearbeitung in Echtzeit; Viertens das Abspeichern des gesamten Modell-Bearbeitungsprozesses; Fünftens eine dynamische Erweiterbarkeit sowohl für Softwareentwickler, als auch für die Nutzer der Tools. Die Bezeichnung FREAC umfasst sowohl das Framework zur Entwicklung und Pflege eines Produktmodells (FREAC-Development) als auch die entwickelten Tools selbst (FREAC-Tools).

Nähert man sich der Frage nach den Zusammenhängen zwischen Strukturalismus und generativen algorithmischen Planungsmethoden, so ist zunächst zu klären, was man unter Strukturalismus in der Architektur versteht. Allerdings gibt es letztlich keinen verbindlichen terminologischen Rahmen, innerhalb dessen sich eine solche Klärung vollziehen könnte. Strukturalismus in der Architektur wird oftmals auf ein formales Phänomen und damit auf eine Stilfrage reduziert. Der vorliegende Text will sich nicht mit Stilen und Phänomenen strukturalistischer Architektur auseinandersetzen, sondern konzentriert sich auf die Betrachtung strukturalistischer Entwurfsmethoden und stellt Bezüge her zu algorithmischen Verfahren, wobei das Zusammenspiel zwischen regelgeleitetem und intuitivem Vorgehen beim Entwerfen herausgearbeitet wird.

Public Private Partnership (PPP) setzt sich zunehmend als alternative Beschaffungsvariante für die öffentliche Hand durch. Im Krankenhausbereich bestehen erste Erfahrungen mit PPP, allerdings kann hier im Gegensatz zu anderen öffentlichen Bereichen noch nicht von einer Etablierung gesprochen werden. In vielen Krankenhäusern besteht Unklarheit über dieses neue Organisationskonzept. Was steckt hinter diesem Begriff, der teilweise synonym zur „Privatisierung“ verwendet wird? Ausgehend von dieser Fragestellung wird in der vorliegenden Arbeit gezeigt, dass PPP bei richtiger Anwendung eine Alternative zum Verkauf eines öffentlichen Krankenhauses darstellt. PPP ist ein Instrument, mit dem privates Know-how und Kapital für den öffentlichen Krankenhausträger nutzbar gemacht wird. Die öffentliche Trägerschaft des Krankenhauses bleibt dabei, im Gegensatz zu einer materiellen Privatisierung, erhalten. Die Rahmenbedingungen des Gesundheitswesens stellen insbesondere die öffentlichen Krankenhäuser vor große Herausforderungen. Die Lage ist zunehmend geprägt von Mittelknappheit, Sanierungsstau und stetig steigendem Wettbewerbsdruck um die Patienten. Die Reformbemühungen der Bundesregierung zur Senkung der Gesundheitsausgaben haben in den letzten Jahrzehnten zu immer neuen Gesetzesregelungen in immer kürzeren Zeitabständen geführt. Den bisher letzten großen Schritt in dieser Entwicklung stellt die Umstellung der Krankenhausvergütung auf DRG-Fallpauschalen dar. Die Auswirkungen sind insbesondere in den öffentlichen Krankenhäusern zu spüren. Defizitäre Einrichtungen, die bisher durch Subventionen gestützt wurden, werden nun nicht mehr „künstlich am Leben“ erhalten. Alle Krankenhäuser erhalten eine leistungsorientierte Vergütung, weitgehend unabhängig von den krankenhausspezifisch anfallenden Kosten. Durch diese Entwicklungen wurde das Bestreben in den Krankenhäuser, die internen Leistungsprozesse zu optimieren, weiter forciert. Dabei kommt den mit der Gebäudesubstanz verbundenen Leistungen eine besondere Bedeutung zu. Aufgrund hoher Investitionskosten und bedeutender Aufwendungen in der Nutzungsphase erreichen die nicht-medizinischen Leistungen in einem Krankenhaus einen beachtlichen Anteil an den Gesamtkosten. Fast ein Drittel der Krankenhaus-Kosten steht nicht in direkter Beziehung zum Heilungsprozess. In Deutschland macht dieser Anteil der nicht-medizinischen Abläufe jährlich rd. 18 Mrd. Euro aus. Das Optimierungspotenzial des nicht-medizinischen Leistungsbereichs, der auch die bau- und immobilienwirtschaftlichen Leistungen umfasst, wird bisher oft noch unterschätzt und ist in den meisten Fällen noch nicht ausgeschöpft. Allein schon aufgrund dessen finanzieller Bedeutung bedarf es einer verstärkten wissenschaftlichen Auseinandersetzung. Dieser Notwendigkeit ist bisher noch unzureichend Rechnung getragen wurden. Die vorliegende Arbeit will mit der Erforschung der Anwendbarkeit von PPP für Krankenaus-Immobilien einen Beitrag dazu leisten, diese Lücke zu schließen. Mit dieser für den deutschen Krankenhausbereich neuartigen Beschaffungsvariante wird ein Weg aufgezeigt, wie bei den nicht-medizinischen Leistungen nachhaltig Effizienzpotenziale erschlossen werden können und auf diese Weise ein Beitrag zum wirtschaftlichen Erfolg des gesamten Krankenhauses erzielt werden kann.