### Refine

#### Document Type

- Article (203)
- Conference Proceeding (133)
- Doctoral Thesis (32)
- Master's Thesis (5)
- Preprint (2)
- Habilitation (1)

#### Institute

- Institut für Strukturmechanik (376) (remove)

#### Keywords

- Angewandte Mathematik (304)
- Strukturmechanik (295)
- Stochastik (40)
- Computerunterstütztes Verfahren (22)
- Architektur <Informatik> (17)
- Finite-Elemente-Methode (14)
- Angewandte Informatik (12)
- CAD (10)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (7)
- Optimierung (6)

Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters.

The effect of urban form on energy consumption has been the subject of various studies around the world. Having examined the effect of buildings on energy consumption, these studies indicate that the physical form of a city has a notable impact on the amount of energy consumed in its spaces. The present study identified the variables that affected energy consumption in residential buildings and analyzed their effects on energy consumption in four neighborhoods in Tehran: Apadana, Bimeh, Ekbatan-phase I, and Ekbatan-phase II. After extracting the variables, their effects are estimated with statistical methods, and the results are compared with the land surface temperature (LST) remote sensing data derived from Landsat 8 satellite images taken in the winter of 2019. The results showed that physical variables, such as the size of buildings, population density, vegetation cover, texture concentration, and surface color, have the greatest impacts on energy usage. For the Apadana neighborhood, the factors with the most potent effect on energy consumption were found to be the size of buildings and the population density. However, for other neighborhoods, in addition to these two factors, a third factor was also recognized to have a significant effect on energy consumption. This third factor for the Bimeh, Ekbatan-I, and Ekbatan-II neighborhoods was the type of buildings, texture concentration, and orientation of buildings, respectively.

Calculating hydrocarbon components solubility of natural gases is known as one of the important issues for operational works in petroleum and chemical engineering. In this work, a novel solubility estimation tool has been proposed for hydrocarbon gases—including methane, ethane, propane, and butane—in aqueous electrolyte solutions based on extreme learning machine (ELM) algorithm. Comparing the ELM outputs with a comprehensive real databank which has 1175 solubility points yielded R-squared values of 0.985 and 0.987 for training and testing phases respectively. Furthermore, the visual comparison of estimated and actual hydrocarbon solubility led to confirm the ability of proposed solubility model. Additionally, sensitivity analysis has been employed on the input variables of model to identify their impacts on hydrocarbon solubility. Such a comprehensive and reliable study can help engineers and scientists to successfully determine the important thermodynamic properties, which are key factors in optimizing and designing different industrial units such as refineries and petrochemical plants.

Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2%, 87.7%, and 83.1%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.

In recent years the demand on dynamic analyses of existing structures in civil engineering has remarkably increased. These analyses are mainly based on numerical models. Accordingly, the generated results depend on the quality of the used models. Therefore it is very important that the models describe the considered systems such that the behaviour of the physical structure is realistically represented. As any model is based on assumptions, there is always a certain degree of uncertainty present in the results of a simulation based on the respective numerical model. To minimise these uncertainties in the prediction of the response of a structure to a certain loading, it has become common practice to update or calibrate the parameters of a numerical model based on observations of the structural behaviour of the respective existing system.
The determination of the behaviour of an existing structure requires experimental investigations. If the numerical analyses concern the dynamic response of a structure it is sensible to direct the experimental investigations towards the identification of the dynamic structural behaviour which is determined by the modal parameters of the system. In consequence, several methods for the experimental identification of modal parameters have been developed since the 1980ies.
Due to various technical restraints in civil engineering which limit the possibilities to excitate a structure with economically reasonable effort, several methods have been developed that allow a modal identification form tests with an ambient excitation. The approach of identifying modal parameters only from measurements of the structural response without precise knowledge of the excitation is known as output-only or operational modal analysis.
Since operational modal analysis (OMA) can be considered as a link between numerical modelling and simulation on the one hand and the dynamic behaviour of an existing structure on the other hand, the respective algorithms connect both the concepts of structural dynamics and mathematical tools applied within the processing of experimental data. Accordingly, the related theoretical topics are revised after an introduction into the topic.
Several OMA methods have been developed over the last decades. The most established algorithms are presented here and their application is illustrated by means of both a small numerical and an experimental example. Since experimentally obtained results always underly manifold influences, an appropriate postprocessing of the results is necessary for a respective quality assessment. This quality assessment does not only require respective indicators but should also include the quantification of uncertainties.
One special feature in modal testing is that it is common to instrument the structure in different sensor setups to improve the spacial resolution of identified mode shapes. The modal information identified from tests in several setups needs to be merged a posteriori. Algorithms to cope with this problem are also presented.
Due to the fact that the amount of data generated in modal tests can become very large, manual processing can become extremely expensive or even impossible, for example in the case of a long-term continuous structural monitoring. In these situations an automated analysis and postprocessing are essential. Descriptions of respective methodologies are therefore also included in this work.
Every structural system in civil engineering is unique and so also every identification of modal parameters has its specific challenges. Some aspects that can be faced in practical applications of operational modal analysis are presented and discussed in a chapter that is dedicated specific problems that an analyst may have to overcome. Case studies of systems with very close modes, with limited accessibility as well as the application of different OMA methods are described and discussed. In this context the focus is put on several types of uncertainty that may occur in the multiple stages of an operational modal analysis. In literature only very specific uncertainties at certain stages of the analysis are addressed. Here, the topic of uncertainties has been considered in a broader sense and approaches for treating respective problems are suggested.
Eventually, it is concluded that the methodologies of operatinal modal analysis and related technical solutions have been well-engineered already. However, as in any discipline that includes experiments, a certain degree of uncertainty always remains in the results. From these conclusions has been derived a demand for further research and development that should be directed towards the minimisation of these uncertainties and to a respective optimisation of the steps and corresponding parameters included in an operational modal analysis.

This thesis addresses an adaptive higher-order method based on a Geometry Independent Field approximatTion(GIFT) of polynomial/rationals plines over hierarchical T-meshes(PHT/RHT-splines).
In isogeometric analysis, basis functions used for constructing geometric models in computer-aided design(CAD) are also employed to discretize the partial differential equations(PDEs) for numerical analysis. Non-uniform rational B-Splines(NURBS) are the most commonly used basis functions in CAD. However, they may not be ideal for numerical analysis where local refinement is required.
The alternative method GIFT deploys different splines for geometry and numerical analysis. NURBS are utilized for the geometry representation, while for the field solution, PHT/RHT-splines are used. PHT-splines not only inherit the useful properties of B-splines and NURBS, but also possess the capabilities of local refinement and hierarchical structure. The smooth basis function properties of PHT-splines make them suitable for analysis purposes. While most problems considered in isogeometric analysis can be solved efficiently when the solution is smooth, many non-trivial problems have rough solutions. For example, this can be caused by the presence of re-entrant corners in the domain. For such problems, a tensor-product basis (as in the case of NURBS) is less suitable for resolving the singularities that appear since refinement propagates throughout the computational domain. Hierarchical bases and local refinement (as in the case of PHT-splines) allow for a more efficient way to resolve these singularities by adding more degrees of freedom where they are necessary. In order to drive the adaptive refinement, an efficient recovery-based error estimator is proposed in this thesis. The estimator produces a recovery solution which is a more accurate approximation than the computed numerical solution. Several two- and three-dimensional numerical investigations with PHT-splines of higher order and continuity prove that the proposed method is capable of obtaining results with higher accuracy, better convergence, fewer degrees of freedom and less computational cost than NURBS for smooth solution problems. The adaptive GIFT method utilizing PHT-splines with the recovery-based error estimator is used for solutions with discontinuities or singularities where adaptive local refinement in particular domains of interest achieves higher accuracy with fewer degrees of freedom. This method also proves that it can handle complicated multi-patch domains for two- and three-dimensional problems outperforming uniform refinement in terms of degrees of freedom and computational cost.

Since the Industrial Revolution in the 1700s, the high emission of gaseous wastes into the atmosphere from the usage of fossil fuels has caused a general increase in temperatures globally. To combat the environmental imbalance, there is an increase in the demand for renewable energy sources. Dams play a major role in the generation of “green" energy. However, these structures require frequent and strict monitoring to ensure safe and efficient operation. To tackle the challenges faced in the application of convention dam monitoring techniques, this work proposes the inverse analysis of numerical models to identify damaged regions in the dam. Using a dynamic coupled hydro-mechanical Extended Finite Element Method (XFEM) model and a global optimization strategy, damage (crack) in the dam is identified. By employing seismic waves to probe the dam structure, a more detailed information on the distribution of heterogeneous materials and damaged regions are obtained by the application of the Full Waveform Inversion (FWI) method. The FWI is based on a local optimization strategy and thus it is highly dependent on the starting model. A variety of data acquisition setups are investigated, and an optimal setup is proposed. The effect of different starting models and noise in the measured data on the damage identification is considered. Combining the non-dependence of a starting model of the global optimization strategy based dynamic coupled hydro-mechanical XFEM method and the detailed output of the local optimization strategy based FWI method, an enhanced Full Waveform Inversion is proposed for the structural analysis of dams.

Due to an increased need for hydro-electricity, water storage, and flood protection, it is assumed that a series of new dams will be built throughout the world. Comparing existing design methodologies for arch-type dams, model-based shape optimization can effectively reduce construction costs and leverage the properties of construction materials. To apply the means of shape optimization, suitable variables need to be chosen to formulate the objective function, which is the volume of the arch dam here. In order to increase the consistency with practical conditions, a great number of geometrical and behavioral constraints are included in the mathematical model. An optimization method, namely Genetic Algorithm is adopted which allows a global search.
Traditional optimization techniques are realized based on a deterministic approach, which means that the material properties and loading conditions are assumed to be fixed values. As a result, the real-world structures that are optimized by these approaches suffer from uncertainties that one needs to be aware of. Hence, in any optimization process for arch dams, it is nec- essary to find a methodology that is capable of considering the influences of uncertainties and generating a solution which is robust enough against the uncertainties.
The focus of this thesis is the formulation and the numerical method for the optimization of the arch dam under the uncertainties. The two main models, the probabilistic model, and non-probabilistic models are intro- duced and discussed. Classic procedures of probabilistic approaches un- der uncertainties, such as RDO (robust design optimization) and RBDO (reliability-based design optimization), are in general computationally ex- pensive and rely on estimates of the system’s response variance and fail- ure probabilities. Instead, the robust optimization (RO) method which is based on the non-probabilistic model, will not follow a full probabilistic approach but works with pre-defined confidence levels. This leads to a bi-level optimization program where the volume of the dam is optimized under the worst combination of the uncertain parameters. By this, robust and reliable designs are obtained and the result is independent of any as- sumptions on stochastic properties of the random variables in the model.
The optimization of an arch-type dam is realized here by a robust optimiza- tion method under load uncertainty, where hydraulic and thermal loads are considered. The load uncertainty is modeled as an ellipsoidal expression. Comparing with any traditional deterministic optimization (DO) method, which only concerns the minimum objective value and offers a solution candidate close to limit-states, the RO method provides a robust solution against uncertainties.
All the above mentioned methods are applied to the optimization of the arch dam to compare with the optimal design with DO methods. The re- sults are compared and analyzed to discuss the advantages and drawbacks of each method.
In order to reduce the computational cost, a ranking strategy and an ap- proximation model are further involved to do a preliminary screening. By means of these, the robust design can generate an improved arch dam structure which ensures both safety and serviceability during its lifetime.

Renewable energy use is on the rise and these alternative resources of energy can help combat with the climate change. Around 80% of the world's electricity comes from coal and petroleum however, the renewables are the fastest growing source of energy in the world. Solar, wind, hydro, geothermal and biogas are the most common forms of renewable energy. Among them, wind energy is emerging as a reliable and large-scaled source of power production. The recent research and confidence in the performance has led to the construction of more and bigger wind turbines around the world. As wind turbines are getting bigger, a concern regarding their safety is also in discussion. Wind turbines are expensive machinery to construct and the enormous capital investment is one of the main reasons, why many countries are unable to adopt to the wind energy. Generally, a reliable wind turbine will result in better performance and assist in minimizing the cost of operation. If a wind turbine fails, it's a loss of investment and can be harmful for the surrounding habitat. This thesis aims towards estimating the reliability of an offshore wind turbine. A model of Jacket type offshore wind turbine is prepared by using finite element software package ABAQUS and is compared with the structural failure criteria of the wind turbine tower. UQLab, which is a general uncertainty quantification framework developed at ETH Zürich, is used for the reliability analysis. Several probabilistic methods are included in the framework of UQLab, which include Monte Carlo, First Order Reliability Analysis and Adaptive Kriging Monte Carlo simulation. This reliability study is performed only for the structural failure of the wind turbine but it can be extended to many other forms of failures e.g. reliability for power production, or reliability for different component failures etc. It's a useful tool that can be utilized to estimate the reliability of future wind turbines, that could result in more safer and better performance of wind turbines.

The underlying goal of this work is to reduce the uncertainty related to thermally induced stress prediction. This is accomplished by considering use of non-linear material behavior, notably path dependent thermal hysteresis behavior in the elastic properties.
Primary novel factors of this work center on two aspects.
1. Broad material characterization and mechanistic material understanding, giving insight into why this class of material behaves in characteristic manners.
2. Development and implementation of a thermal hysteresis material model and its use to determine impact on overall macroscopic stress predictions.
Results highlight microcracking evolution and behavior as the dominant mechanism for material property complexity in this class of materials. Additionally, it was found that for the cases studied, thermal hysteresis behavior impacts relevant peak stress predictions of a heavy-duty diesel particulate filter undergoing a drop-to-idle regeneration by less than ~15% for all conditions tested. It is also found that path independent heating curves may be utilized for a linear solution assumption to simplify analysis.
This work brings forth a newly conceived concept of a 3 state, 4 path, thermally induced microcrack evolution process; demonstrates experimental behavior that is consistent with the proposed mechanisms, develops a mathematical framework that describes the process and quantifies the impact in a real world application space.

The vibration control of the tall building during earthquake excitations is a challenging task due to their complex seismic behavior. This paper investigates the optimum placement and properties of the Tuned Mass Dampers (TMDs) in tall buildings, which are employed to control the vibrations during earthquakes. An algorithm was developed to spend a limited mass either in a single TMD or in multiple TMDs and distribute them optimally over the height of the building. The Non-dominated Sorting Genetic Algorithm (NSGA – II) method was improved by adding multi-variant genetic operators and utilized to simultaneously study the optimum design parameters of the TMDs and the optimum placement. The results showed that under earthquake excitations with noticeable amplitude in higher modes, distributing TMDs over the height of the building is more effective in mitigating the vibrations compared to the use of a single TMD system. From the optimization, it was observed that the locations of the TMDs were related to the stories corresponding to the maximum modal displacements in the lower modes and the stories corresponding to the maximum modal displacements in the modes which were highly activated by the earthquake excitations. It was also noted that the frequency content of the earthquake has significant influence on the optimum location of the TMDs.

Turbomachinery plays an important role in many cases of energy generation or conversion. Therefore, turbomachinery is a promising approaching point for optimization in order to increase the efficiency of energy use. In recent years, the use of automated optimization strategies in combination with numerical simulation has become increasingly popular in many fields of engineering. The complex interactions between fluid and solid mechanics encountered in turbomachines on the one hand and the high computational expense needed to calculate the performance on the other hand, have, however, prevented a widespread use of these techniques in this field of engineering. The objective of this work was the development of a strategy for efficient metamodel based optimization of centrifugal compressor impellers. In this context, the main focus is the reduction of the required numerical expense. The central idea followed in this research was the incorporation of preliminary information acquired from low-fidelity computation methods and empirical correlations into the sampling process to identify promising regions of the parameter space. This information was then used to concentrate the numerically expensive high-fidelity computations of the fluid dynamic and structure mechanic performance of the impeller in these regions while still maintaining a good coverage of the whole parameter space. The development of the optimization strategy can be divided into three main tasks. Firstly, the available preliminary information had to be researched and rated. This research identified loss models based on one dimensional flow physics and empirical correlations as the best suited method to predict the aerodynamic performance. The loss models were calibrated using available performance data to obtain a high prediction quality. As no sufficiently exact models for the prediction of the mechanical loading of the impellercould be identified, a metamodel based on finite element computations was chosen for this estimation. The second task was the development of a sampling method which concentrates samples in regions of the parameter space where high quality designs are predicted by the preliminary information while maintaining a good overall coverage. As available methods like rejection sampling or Markov-chain Monte-Carlo methods did not meet the requirements in terms of sample distribution and input correlation, a new multi-fidelity sampling method called “Filtered Sampling“has been developed. The last task was the development of an automated computational workflow. This workflow encompasses geometry parametrization, geometry generation, grid generation and computation of the aerodynamic performance and the structure mechanic loading. Special emphasis was put into the development of a geometry parametrization strategy based on fluid mechanic considerations to prevent the generation of physically inexpedient designs. Finally, the optimization strategy, which utilizes the previously developed tools, was successfully employed to carry out three optimization tasks. The efficiency of the method was proven by the first and second testcase where an existing compressor design was optimized by the presented method. The results were comparable to optimizations which did not take preliminary information into account, while the required computational expense cloud be halved. In the third testcase, the method was applied to generate a new impeller design. In contrast to the previous examples, this optimization featuredlargervariationsoftheimpellerdesigns. Therefore, theapplicability of the method to parameter spaces with significantly varying designs could be proven, too.

Identification of flaws in structures is a critical element in the management of maintenance and quality assurance processes in engineering. Nondestructive testing (NDT) techniques based on a wide range of physical principles have been developed and are used in common practice for structural health monitoring. However, basic NDT techniques are usually limited in their ability to provide the accurate information on locations, dimensions and shapes of flaws. One alternative to extract additional information from the results of NDT is to append it with a computational model that provides detailed analysis of the physical process involved and enables the accurate identification of the flaw parameters. The aim here is to develop the strategies to uniquely identify cracks in two-dimensional 2D) structures under dynamic loadings.
A local NDT technique combined eXtended Finite Element Method (XFEM) with dynamic loading in order to identify the cracks in the structures quickly and accurately is developed in this dissertation. The Newmark-b time integration method with Rayleigh damping is used for the time integration. We apply Nelder-Mead (NM)and Quasi-Newton (QN) methods for identifying the crack tip in plate. The inverse problem is solved iteratively, in which XFEM is used for solving the forward problem in each iteration. For a timeharmonic excitation with a single frequency and a short-duration signal measured along part of the external boundary, the crack is detected through the solution of an inverse time-dependent problem. Compared to the static load, we show that the dynamic loads are more effective for crack detection problems. Moreover, we tested different dynamic loads and find that NM method works more efficient under the harmonic load than the pounding load while the QN method achieves almost the same results for both load types.
A global strategy, Multilevel Coordinate Search (MCS) with XFEM (XFEM-MCS) methodology under the dynamic electric load, to detect multiple cracks in 2D piezoelectric plates is proposed in this dissertation. The Newmark-b method is employed for the time integration and in each iteration the forward problem is solved by XFEM for various cracks. The objective functional is minimized by using a global search algorithm MCS. The test problems show that the XFEM-MCS algorithm under the dynamic electric load can be effectively employed for multiple cracks detection in piezoelectric materials, and it proves to be robust in identifying defects in piezoelectric structures. Fiber-reinforced composites (FRCs) are extensively applied in practical engineering since they have high stiffness and strength. Experiments reveal a so-called interphase zone, i.e. the space between the outside interface of the fiber and the inside interface of the matrix. The interphase strength between the fiber and the matrix strongly affects the mechanical properties as a result of the large ratio of interface/volume. For the purpose of understanding the mechanical properties of FRCs with functionally graded interphase (FGI), a closed-form expression of the interface strength between a fiber and a matrix is obtained in this dissertation using a continuum modeling approach according to the ver derWaals (vdW) forces. Based on the interatomic potential, we develop a new modified nonlinear cohesive law, which is applied to study the interface delamination of FRCs with FGI under different loadings. The analytical solutions show that the delamination behavior strongly depends on the interphase thickness, the fiber radius, the Young’s moduli and Poisson’s ratios of the fiber and the matrix. Thermal conductivity is the property of a material to conduct heat. With the development and deep research of 2D materials, especially graphene and molybdenum disulfide (MoS2), the thermal conductivity of 2D materials attracts wide attentions. The thermal conductivity of graphene nanoribbons (GNRs) is found to appear a tendency of decreasing under tensile strain by classical molecular dynamics (MD) simulations. Hence, the strain effects of graphene can play a key role in the continuous tunability and applicability of its thermal conductivity property at nanoscale, and the dissipation of thermal conductivity is an obstacle for the applications of thermal management. Up to now, the thermal conductivity of graphene under shear deformation has not been investigated yet. From a practical point of view, good thermal managements of GNRs have significantly potential applications of future GNR-based thermal nanodevices, which can greatly improve performances of the nanosized devices due to heat dissipations. Meanwhile, graphene is a thin membrane structure, it is also important to understand the wrinkling behavior under shear deformation. MoS2 exists in the stable semiconducting 1H phase (1H-MoS2) while the metallic 1T phase (1T-MoS2) is unstable at ambient conditions. As it’s well known that much attention has been focused on studying the nonlinear optical properties of the 1H-MoS2. In a very recent research, the 1T-type monolayer crystals of TMDCs, MX2 (MoS2, WS2 ...) was reported having an intrinsic in-plane negative Poisson’s ratio. Luckily, nearly at the same time, unprecedented long-term (>3months) air stability of the 1T-MoS2 can be achieved by using the donor lithium hydride (LiH). Therefore, it’s very important to study the thermal conductivity of 1T-MoS2.
The thermal conductivity of graphene under shear strain is systematically studied in this dissertation by MD simulations. The results show that, in contrast to the dramatic decrease of thermal conductivity of graphene under uniaxial tensile, the thermal conductivity of graphene is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16%. The wrinkle evolves when the shear strain is around 5%-10%, but the thermal conductivity barely changes.
The thermal conductivities of single-layer 1H-MoS2(1H-SLMoS2) and single-layer 1T-MoS2 (1T-SLMoS2) with different sample sizes, temperatures and strain rates have been studied systematically in this dissertation. We find that the thermal conductivities of 1H-SLMoS2 and 1T-SLMoS2 in both the armchair and the zigzag directions increase with the increasing of the sample length, while the increase of the width of the sample has minor effect on the thermal conductions of these two structures. The thermal conductivity of 1HSLMoS2 is smaller than that of 1T-SLMoS2 under size effect. Furthermore, the temperature effect results show that the thermal conductivities of both 1H-SLMoS2 and 1T-SLMoS2 decrease with the increasing of the temperature. The thermal conductivities of 1HSLMoS2 and 1T-SLMoS2 are nearly the same (difference <6%) in both of the chiral orientations under corresponding temperatures, especially in the armchair direction (difference <2.8%). Moreover, we find that the strain effects on the thermal conductivity of 1HSLMoS2 and 1T-SLMoS2 are different. More specifically, the thermal conductivity decreases with the increasing tensile strain rate for
1T-SLMoS2, while fluctuates with the growth of the strain for 1HSLMoS2. Finally, we find that the thermal conductivity of same sized 1H-SLMoS2 is similar with that of the strained 1H-SLMoS2 structure.

Matrix-free voxel-based finite element method for materials with heterogeneous microstructures
(2019)

Modern image detection techniques such as micro computer tomography
(μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis.
However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm.
This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.

Estimating the solubility of carbon dioxide in ionic liquids, using reliable models, is of paramount importance from both environmental and economic points of view. In this regard, the current research aims at evaluating the performance of two data-driven techniques, namely multilayer perceptron (MLP) and gene expression programming (GEP), for predicting the solubility of carbon dioxide (CO2) in ionic liquids (ILs) as the function of pressure, temperature, and four thermodynamical parameters of the ionic liquid. To develop the above techniques, 744 experimental data points derived from the literature including 13 ILs were used (80% of the points for training and 20% for validation). Two backpropagation-based methods, namely Levenberg–Marquardt (LM) and Bayesian Regularization (BR), were applied to optimize the MLP algorithm. Various statistical and graphical assessments were applied to check the credibility of the developed techniques. The results were then compared with those calculated using Peng–Robinson (PR) or Soave–Redlich–Kwong (SRK) equations of state (EoS). The highest coefficient of determination (R2 = 0.9965) and the lowest root mean square error (RMSE = 0.0116) were recorded for the MLP-LMA model on the full dataset (with a negligible difference to the MLP-BR model). The comparison of results from this model with the vastly applied thermodynamic equation of state models revealed slightly better performance, but the EoS approaches also performed well with R2 from 0.984 up to 0.996. Lastly, the newly established correlation based on the GEP model exhibited very satisfactory results with overall values of R2 = 0.9896 and RMSE = 0.0201.

FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks
(2019)

Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods.

Biodiesel, as the main alternative fuel to diesel fuel which is produced from renewable and available resources, improves the engine emissions during combustion in diesel engines. In this study, the biodiesel is produced initially from waste cooking oil (WCO). The fuel samples are applied in a diesel engine and the engine performance has been considered from the viewpoint of exergy and energy approaches. Engine tests are performed at a constant 1500 rpm speed with various loads and fuel samples. The obtained experimental data are also applied to develop an artificial neural network (ANN) model. Response surface methodology (RSM) is employed to optimize the exergy and energy efficiencies. Based on the results of the energy analysis, optimal engine performance is obtained at 80% of full load in presence of B10 and B20 fuels. However, based on the exergy analysis results, optimal engine performance is obtained at 80% of full load in presence of B90 and B100 fuels. The optimum values of exergy and energy efficiencies are in the range of 25–30% of full load, which is the same as the calculated range obtained from mathematical modeling.

Management strategies for sustainable sugarcane production need to deal with the increasing complexity and variability of the whole sugar system. Moreover, they need to accommodate the multiple goals of different industry sectors and the wider community. Traditional disciplinary approaches are unable to provide integrated management solutions, and an approach based on whole systems analysis is essential to bring about beneficial change to industry and the community. The application of this approach to water management, environmental management and cane supply management is outlined, where the literature indicates that the application of extreme learning machine (ELM) has never been explored in this realm. Consequently, the leading objective of the current research was set to filling this gap by applying ELM to launch swift and accurate model for crop production data-driven. The key learning has been the need for innovation both in the technical aspects of system function underpinned by modelling of sugarcane growth. Therefore, the current study is an attempt to establish an integrate model using ELM to predict the concluding growth amount of sugarcane. Prediction results were evaluated and further compared with artificial neural network (ANN) and genetic programming models. Accuracy of the ELM model is calculated using the statistics indicators of Root Means Square Error (RMSE), Pearson Coefficient (r), and Coefficient of Determination (R2) with promising results of 0.8, 0.47, and 0.89, respectively. The results also show better generalization ability in addition to faster learning curve. Thus, proficiency of the ELM for supplementary work on advancement of prediction model for sugarcane growth was approved with promising results.

The production of a desired product needs an effective use of the experimental model. The present study proposes an extreme learning machine (ELM) and a support vector machine (SVM) integrated with the response surface methodology (RSM) to solve the complexity in optimization and prediction of the ethyl ester and methyl ester production process. The novel hybrid models of ELM-RSM and ELM-SVM are further used as a case study to estimate the yield of methyl and ethyl esters through a trans-esterification process from waste cooking oil (WCO) based on American Society for Testing and Materials (ASTM) standards. The results of the prediction phase were also compared with artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS), which were recently developed by the second author of this study. Based on the results, an ELM with a correlation coefficient of 0.9815 and 0.9863 for methyl and ethyl esters, respectively, had a high estimation capability compared with that for SVM, ANNs, and ANFIS. Accordingly, the maximum production yield was obtained in the case of using ELM-RSM of 96.86% for ethyl ester at a temperature of 68.48 °C, a catalyst value of 1.15 wt. %, mixing intensity of 650.07 rpm, and an alcohol to oil molar ratio (A/O) of 5.77; for methyl ester, the production yield was 98.46% at a temperature of 67.62 °C, a catalyst value of 1.1 wt. %, mixing intensity of 709.42 rpm, and an A/O of 6.09. Therefore, ELM-RSM increased the production yield by 3.6% for ethyl ester and 3.1% for methyl ester, compared with those for the experimental data.

In this work, molecular separation of aqueous-organic was simulated by using combined soft computing-mechanistic approaches. The considered separation system was a microporous membrane contactor for separation of benzoic acid from water by contacting with an organic phase containing extractor molecules. Indeed, extractive separation is carried out using membrane technology where complex of solute-organic is formed at the interface. The main focus was to develop a simulation methodology for prediction of concentration distribution of solute (benzoic acid) in the feed side of the membrane system, as the removal efficiency of the system is determined by concentration distribution of the solute in the feed channel. The pattern of Adaptive Neuro-Fuzzy Inference System (ANFIS) was optimized by finding the optimum membership function, learning percentage, and a number of rules. The ANFIS was trained using the extracted data from the CFD simulation of the membrane system. The comparisons between the predicted concentration distribution by ANFIS and CFD data revealed that the optimized ANFIS pattern can be used as a predictive tool for simulation of the process. The R2 of higher than 0.99 was obtained for the optimized ANFIS model. The main privilege of the developed methodology is its very low computational time for simulation of the system and can be used as a rigorous simulation tool for understanding and design of membrane-based systems.
Highlights are, Molecular separation using microporous membranes. Developing hybrid model based on ANFIS-CFD for the separation process, Optimization of ANFIS structure for prediction of separation process

Advances in nanotechnology lead to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators with ultra-high resonant frequencies. The ultra-high-frequency resonators have recently received significant attention for wide-ranging applications such as molecular separation, molecular transportation, ultra-high sensitive sensing, high-frequency signal processing, and biological imaging. It is well known that for micrometer length scale, first-principles technique, the most accurate approach, poses serious limitations for comparisons with experimental studies. For such larger size, classical molecular dynamics (MD) simulations are desirable, which require interatomic potentials. Additionally, a mesoscale method such as the coarse-grained (CG) method is another useful method to support simulations for even larger system sizes.
Furthermore, quasi-two-dimensional (Q2D) materials have attracted intensive research interest due to their many novel properties over the past decades. However, the energy dissipation mechanisms of nanomechanical resonators based on several Q2D materials are still unknown. In this work, the addressed main issues include the development of the CG models for molybdenum disulphide (MoS2), investigation of the mechanism effects on black phosphorus (BP) nanoresonators and the application of graphene nanoresonators. The primary coverage and results of the dissertation are as follows:
Method development. Firstly, a two-dimensional (2D) CG model for single layer MoS2 (SLMoS2) is analytically developed. The Stillinger-Weber (SW) potential for this 2D CG model is further parametrized, in which all SW geometrical parameters are determined analytically according to the equilibrium condition for each individual potential term, while the SW energy parameters are derived analytically based on the valence force field model. Next, the 2D CG model is further simplified to one-dimensional (1D) CG model, which describes the 2D SLMoS2 structure using a 1D chain model. This 1D CG model is applied to investigate the relaxed configuration and the resonant oscillation of the folded SLMoS2. Owning to the simplicity nature of the 1D CG model, the relaxed configuration of the folded SLMoS2 is determined analytically, and the resonant oscillation frequency is derived analytically. Considering the increasing interest in studying the properties of other 2D layered materials, and in particular those in the semiconducting transition metal dichalcogenide class like MoS2, the CG models proposed in current work provide valuable simulation approaches.
Mechanism understanding. Two energy dissipation mechanisms of BP nanoresonators are focused exclusively, i.e. mechanical strain effects and defect effects (including vacancy and oxidation). Vacancy defect is intrinsic damping factor for the quality (Q)-factor, while mechanical strain and oxidation are extrinsic damping factors. Intrinsic dissipation (induced by thermal vibrations) in BP resonators (BPRs) is firstly investigated. Specifically, classical MD simulations are performed to examine the temperature dependence for the Q-factor of the single layer BPR (SLBPR) along the armchair and zigzag directions, where two-step fitting procedure is used to extract the frequency and Q-factor from the kinetic energy time history. The Q-factors of BPRs are evaluated through comparison with those of graphene and MoS2 nanoresonators. Next, effects of mechanical strain, vacancy and oxidation on BP nanoresonators are investigated in turn. Considering the increasing interest in studying the properties of BP, and in particular the lack of theoretical study for the BPRs, the results in current work provide a useful reference.
Application. A novel application for graphene nanoresonators, using them to self-assemble small nanostructures such as water chains, is proposed. All of the underlying physics enabling this phenomenon is elucidated. In particular, by drawing inspiration from macroscale self-assembly using the higher order resonant modes of Chladni plates, classical MD simulations are used to investigate the self-assembly of water molecules using
graphene nanoresonators. An analytic formula for the critical resonant frequency based on the interaction between water molecules and graphene is provided. Furthermore, the properties of the water chains assembled by the graphene nanoresonators are studied.

Polymeric nanocomposites (PNCs) are considered for numerous nanotechnology such as: nano-biotechnology, nano-systems, nanoelectronics, and nano-structured materials. Commonly , they are formed by polymer (epoxy) matrix reinforced with a nanosized filler. The addition of rigid nanofillers to the epoxy matrix has offered great improvements in the fracture toughness without sacrificing other important thermo-mechanical properties. The physics of the fracture in PNCs is rather complicated and is influenced by different parameters. The presence of uncertainty in the predicted output is expected as a result of stochastic variance in the factors affecting the fracture mechanism. Consequently, evaluating the improved fracture toughness in PNCs is a challenging problem.
Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) have been employed to predict the fracture energy of polymer/particle nanocomposites. The ANN and ANFIS models were constructed, trained, and tested based on a collection of 115 experimental datasets gathered from the literature. The performance evaluation indices of the developed ANN and ANFIS showed relatively small error, with high coefficients of determination (R2), and low root mean square error and mean absolute percentage error.
In the framework for uncertainty quantification of PNCs, a sensitivity analysis (SA) has been conducted to examine the influence of uncertain input parameters on the fracture toughness of polymer/clay nanocomposites (PNCs). The phase-field approach is employed to predict the macroscopic properties of the composite considering six uncertain input parameters. The efficiency, robustness, and repeatability are compared and evaluated comprehensively for five different SA methods.
The Bayesian method is applied to develop a methodology in order to evaluate the performance of different analytical models used in predicting the fracture toughness of polymeric particles nanocomposites. The developed method have considered the model and parameters uncertainties based on different reference data (experimental measurements) gained from the literature. Three analytical models differing in theory and assumptions were examined. The coefficients of variation of the model predictions to the measurements are calculated using the approximated optimal parameter sets. Then, the model selection probability is obtained with respect to the different reference data.
Stochastic finite element modeling is implemented to predict the fracture toughness of polymer/particle nanocomposites. For this purpose, 2D finite element model containing an epoxy matrix and rigid nanoparticles surrounded by an interphase zone is generated. The crack propagation is simulated by the cohesive segments method and phantom nodes. Considering the uncertainties in the input parameters, a polynomial chaos expansion (PCE) surrogate model is construed followed by a sensitivity analysis.

This dissertation is devoted to the theoretical development and experimental laboratory verification of a new damage localization method: The state projection estimation error (SP2E). This method is based on the subspace identification of mechanical structures, Krein space based H-infinity estimation and oblique projections. To explain method SP2E, several theories are discussed and laboratory experiments have been conducted and analysed.
A fundamental approach of structural dynamics is outlined first by explaining mechanical systems based on first principles. Following that, a fundamentally different approach, subspace identification, is comprehensively explained. While both theories, first principle and subspace identification based mechanical systems, may be seen as widespread methods, barely known and new techniques follow up. Therefore, the indefinite quadratic estimation theory is explained. Based on a Popov function approach, this leads to the Krein space based H-infinity theory. Subsequently, a new method for damage identification, namely SP2E, is proposed. Here, the introduction of a difference process, the analysis by its average process power and the application of oblique projections is discussed in depth.
Finally, the new method is verified in laboratory experiments. Therefore, the identification of a laboratory structure at Leipzig University of Applied Sciences is elaborated. Then structural alterations are experimentally applied, which were localized by SP2E afterwards. In the end four experimental sensitivity studies are shown and discussed. For each measurement series the structural alteration was increased, which was successfully tracked by SP2E. The experimental results are plausible and in accordance with the developed theories. By repeating these experiments, the applicability of SP2E for damage localization is experimentally proven.

The main categories of wind effects on long span bridge decks are buffeting, flutter, vortex-induced vibrations (VIV) which are often critical for the safety and serviceability of the structure. With the rapid increase of bridge spans, research on controlling wind-induced vibrations of long span bridges has been a problem of great concern.The developments of vibration control theories have led to the wide use of tuned mass dampers (TMDs) which has been proven to be effective for suppressing these vibrations both analytically and experimentally. Fire incidents are also of special interest in the stability and safety of long span bridges due to significant role of the complex phenomenon through triple interaction between the deck with the incoming wind flow and the thermal boundary of the surrounding air.
This work begins with analyzing the buffeting response and flutter instability of three dimensional computational structural dynamics (CSD) models of a cable stayed bridge due to strong wind excitations using ABAQUS finite element commercial software. Optimization and global sensitivity analysis are utilized to target the vertical and torsional vibrations of the segmental deck through considering three aerodynamic parameters (wind attack angle, deck streamlined length and viscous damping of the stay cables). The numerical simulations results in conjunction with the frequency analysis results emphasized the existence of these vibrations and further theoretical studies are possible with a high level of accuracy. Model validation is performed by comparing the results of lift and moment coefficients between the created CSD models and two benchmarks from the literature (flat plate theory) and flat plate by (Xavier and co-authors) which resulted in very good agreements between them. Optimum values of the parameters have been identified. Global sensitivity analysis based on Monte Carlo sampling method was utilized to formulate the surrogate models and calculate the sensitivity indices. The rational effect and the role of each parameter on the aerodynamic stability of the structure were calculated and efficient insight has been constructed for the stability of the long span bridge.
2D computational fluid dynamics (CFD) models of the decks are created with the support of MATLAB codes to simulate and analyze the vortex shedding and VIV of the deck. Three aerodynamic parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system and the vortices shapes and patterns. Two benchmarks from the literature (Von Karman) and (Dyrbye and Hansen) are used to validate the numerical simulations of the vortex shedding for the CFD models. A good consent between the results was detected. Latin hypercube experimental
method is dedicated to generate the surrogate models for the kinetic energy of the system and the generated lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for each parameter. The kinetic energy approach performed very well in revealing the rational effect and the role of each parameter in the generation of vortex shedding and predicting the early VIV and the critical wind speed.
Both one-way fluid-structure interaction (one-way FSI) simulations and two-way fluid-structure interaction (two-way FSI) co-simulations for the 2D models of the deck are executed to calculate the shedding frequencies for the associated wind speeds in the lock-in region in addition to the lift and drag coefficients. Validation is executed with the results of (Simiu and Scanlan) and the results of flat plate theory compiled by (Munson and co-authors) respectively. High levels of agreements between all the results were detected. A decrease in the critical wind speed and the shedding frequencies considering (two-way FSI) was identified compared to those obtained in the (one-way FSI). The results from the (two-way FSI) approach predicted appreciable decrease in the lift and drag forces as well as prediction of earlier VIV for lower critical wind speeds and lock-in regions which exist at lower natural frequencies of the system. These conclusions help the designers to efficiently plan and consider for the design and safety of the long span bridge before and after construction.
Multiple tuned mass dampers (MTMDs) system has been applied in the three dimensional CSD models of the cable stayed bridge to analyze their control efficiency in suppressing both wind -induced vertical and torsional vibrations of the deck by optimizing three design parameters (mass ratio, frequency ratio and damping ratio) for the (TMDs) supporting on actual field data and minimax optimization technique in addition to MATLAB codes and Fast Fourier Transform technique. The optimum values of each parameter were identified and validated with two benchmarks from the literature, first with (Wang and co-authors) and then with (Lin and co-authors). The validation procedure detected a good agreement between the results. Box-Behnken experimental method is dedicated to formulate the surrogate models to represent the control efficiency of the vertical and torsional vibrations. Sobol's sensitivity indices are calculated for the design parameters in addition to their interaction orders. The optimization results revealed better performance of the MTMDs in controlling both the vertical and the torsional vibrations for higher mode shapes. Furthermore, the calculated rational effect of each design parameter facilitates to increase the control efficiency of the MTMDs in conjunction with the support of the surrogate models which simplifies the process of analysis for vibration control to a great extent.
A novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of the cable stayed bridge. Two lateral steel
beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared that the coupling between the vertical and torsional mode shapes of vibrations has been removed to larger natural frequencies magnitudes and higher rare critical wind speeds with a high factor of safety.
Finally, thermal fluid-structure interaction (TFSI) and coupled thermal-stress analysis are utilized to identify the effects of transient and steady state heat-transfer on the VIV and fatigue of the deck due to fire incidents. Numerical simulations of TFSI models of the deck are dedicated to calculate the lift and drag forces in addition to determining the lock-in regions once using FSI models and another using TFSI models. Vorticity and thermal fields of three fire scenarios are simulated and analyzed. The benchmark of (Simiu and Scanlan) is used to validate the TFSI models, where a good agreement was manifested between the two results. Extended finite element method (XFEM) is adopted to create 3D models of the cable stayed bridge to simulate the fatigue of the deck considering three fire scenarios. The benchmark of (Choi and Shin) is used to validate the damaged models of the deck in which a good coincide was seen between them. The results revealed that the TFSI models and the coupled thermal-stress models are significant in detecting earlier vortex induced vibration and lock-in regions in addition to predicting damages and fatigue of the deck and identifying the role of wind-induced vibrations in speeding up the damage generation and the collapse of the structure in critical situations.

Phase Field Modeling for Fracture with Applications to Homogeneous and Heterogeneous Materials
(2017)

The thesis presents an implementation including different applications of a variational-based approach for gradient type standard dissipative solids. Phase field model for brittle fracture is an application of the variational-based framework for gradient type solids. This model allows the prediction of different crack topologies and states. Of significant concern is the application of theoretical and numerical formulation of the phase field modeling into the commercial finite element software Abaqus in 2D and 3D. The fully coupled incremental variational formulation of phase field method is implemented by using the UEL and UMAT subroutines of Abaqus. The phase field method
considerably reduces the implementation complexity of fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion type equation governing the phase field evolution is solved simultaneously via a Newton-
Raphson approach. Post-processing of simulation results to be used as visualization
module is performed via an additional UMAT subroutine implemented in the standard Abaqus viewer.
In the same context, we propose a simple yet effective algorithm to initiate and propagate cracks in 2D geometries which is independent of both particular constitutive laws and specific element technology and dimension. It consists of a localization limiter in the form of the screened Poisson equation with, optionally, local mesh refinement. A staggered scheme for standard equilibrium and screened Cauchy equations is used. The remeshing part of the algorithm consists of a sequence of mesh subdivision and element erosion steps. Element subdivision is based on edge split operations using a
given constitutive quantity (either damage or void fraction). Mesh smoothing makes use of edge contraction as function of a given constitutive quantity such as the principal stress or void fraction. To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.
Furthermore, we introduce a computational approach regarding mechanical loading in microscale on an inelastically deforming composite material. The nanocomposites material of fully exfoliated clay/epoxy is shaped to predict macroscopic elastic and fracture related material parameters based on their fine–scale features. Two different configurations of polymer nanocomposites material (PNCs) have been studied. These configurations are fully bonded PNCs and PNCs with an interphase zone formation between the matrix and the clay reinforcement. The representative volume element of PNCs specimens with different clay weight contents, different aspect ratios, and different
interphase zone thicknesses are generated by adopting Python scripting. Different constitutive models are employed for the matrix, the clay platelets, and the interphase zones. The brittle fracture behavior of the epoxy matrix and the interphase zones material are modeled using the phase field approach, whereas the stiff silicate clay platelets of the composite are designated as a linear elastic material. The comprehensive study investigates the elastic and fracture behavior of PNCs composites, in addition to predict Young’s modulus, tensile strength, fracture toughness, surface energy dissipation, and cracks surface area in the composite for different material parameters, geometry, and interphase zones properties and thicknesses.

Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines.
Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria.
At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine.

The gradual digitization in the architecture, engineering, and construction industry over the past fifty years led to an extremely heterogeneous software environment, which today is embodied by the multitude of different digital tools and proprietary data formats used by the many specialists contributing to the design process in a construction project. Though these projects become increasingly complex, the demands on financial efficiency and the completion within a tight schedule grow at the same time. The digital collaboration of project partners has been identified as one key issue in successfully dealing with these challenges. Yet currently, the numerous software applications and their respective individual views on the design process severely impede that collaboration.
An approach to establish a unified basis for the digital collaboration, regardless of the existing software heterogeneity, is a comprehensive digital building model contributed to by all projects partners. This type of data management known as building information modeling (BIM) has many benefits, yet its adoption is associated with many difficulties and thus, proceeds only slowly. One aspect in the field of conflicting requirements on such a digital model is the cooperation of architects and structural engineers. Traditionally, these two disciplines use different abstractions of reality for their models that in consequence lead to incompatible digital representations thereof.
The onset of isogeometric analysis (IGA) promised to ease the discrepancy in design and analysis model representations. Yet, that initial focus quickly shifted towards using these methods as a more powerful basis for numerical simulations. Furthermore, the isogeometric representation alone is not capable of solving the model abstraction problem. It is thus the intention of this work to contribute to an improved digital collaboration of architects and engineers by exploring an integrated analysis approach on the basis of an unified digital model and solid geometry expressed by splines. In the course of this work, an analysis framework is developed that utilizes such models to automatically conduct numerical simulations commonly required in construction projects. In essence, this allows to retrieve structural analysis results from BIM models in a fast and simple manner, thereby facilitating rapid design iterations and profound design feedback.
The BIM implementation Industry Foundation Classes (IFC) is reviewed with regard to its capabilities of representing the unified model. The current IFC schema strongly supports the use of redundant model data, a major pitfall in digital collaboration. Additionally, it does not allow to describe the geometry by volumetric splines. As the pursued approach builds upon a unique model for both, architectural and structural design, and furthermore requires solid geometry, necessary schema modifications are suggested.
Structural entities are modeled by volumetric NURBS patches, each of which constitutes an individual subdomain that, with regard to the analysis, is incompatible with the remaining full model. The resulting consequences for numerical simulation are elaborated in this work. The individual subdomains have to be weakly coupled, for which the mortar method is used. Different approaches to discretize the interface traction fields are implemented and their respective impact on the analysis results is evaluated. All necessary coupling conditions are automatically derived from the related geometry model.
The weak coupling procedure leads to a linear system of equations in saddle point form, which, owed to the volumetric modeling, is large in size and, the associated coefficient matrix has, due to the use of higher degree basis functions, a high bandwidth. The peculiarities of the system require adapted solution methods that generally cause higher numerical costs than the standard procedures for symmetric, positive-definite systems do. Different methods to solve the specific system are investigated and an efficient parallel algorithm is finally proposed.
When the structural analysis model is derived from the unified model in the BIM data, it does in general initially not meet the requirements on the discretization that are necessary to obtain sufficiently accurate analysis results. The consequently necessary patch refinements must be controlled automatically to allowfor an entirely automatic analysis procedure. For that purpose, an empirical refinement scheme based on the geometrical and possibly mechanical properties of the specific entities is proposed. The level of refinement may be selectively manipulated by the structural engineer in charge. Furthermore, a Zienkiewicz-Zhu type error estimator is adapted for the use with isogeometric analysis results. It is shown that also this estimator can be used to steer an adaptive refinement procedure.

Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation
(2016)

Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.

The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method.

The key objective of this research is to study fracture with a meshfree method, local maximum entropy approximations, and model fracture in thin shell structures with complex geometry and topology. This topic is of high relevance for real-world applications, for example in the automotive industry and in aerospace engineering. The shell structure can be described efficiently by meshless methods which are capable of describing complex shapes as a collection of points instead of a structured mesh. In order to find the appropriate numerical method to achieve this goal, the first part of the work was development of a method based on local maximum entropy (LME)
shape functions together with enrichment functions used in partition of unity methods to discretize problems in linear elastic fracture mechanics. We obtain improved accuracy relative to the standard extended finite element method (XFEM) at a comparable computational cost. In addition, we keep the advantages of the LME shape functions,such as smoothness and non-negativity. We show numerically that optimal convergence (same as in FEM) for energy norm and stress intensity factors can be obtained through the use of geometric (fixed area) enrichment with no special treatment of the nodes
near the crack such as blending or shifting.
As extension of this method to three dimensional problems and complex thin shell structures with arbitrary crack growth is cumbersome, we developed a phase field model for fracture using LME. Phase field models provide a powerful tool to tackle moving interface problems, and have been extensively used in physics and materials science. Phase methods are gaining popularity in a wide set of applications in applied science and engineering, recently a second order phase field approximation for brittle fracture has gathered significant interest in computational fracture such that sharp cracks discontinuities are modeled by a diffusive crack. By minimizing the system energy with respect to the mechanical displacements and the phase-field, subject to an irreversibility condition to avoid crack healing, this model can describe crack nucleation, propagation, branching and merging. One of the main advantages of the phase field modeling of fractures is the unified treatment of the interfacial tracking and mechanics, which potentially leads to simple, robust, scalable computer codes applicable to complex systems. In other words, this approximation reduces considerably the implementation complexity because the numerical tracking of the fracture is not needed, at the expense of a high computational cost. We present a fourth-order phase field model for fracture based on local maximum entropy (LME) approximations. The higher order continuity of the meshfree LME approximation allows to directly solve the fourth-order phase field equations without splitting the fourth-order differential equation into two second order differential equations. Notably, in contrast to previous discretizations that use at least a quadratic basis, only linear completeness is needed in the LME approximation. We show that the crack surface can be captured more accurately in the fourth-order model than the second-order model. Furthermore, less nodes are needed for the fourth-order model to resolve the crack path. Finally, we demonstrate the performance of the proposed meshfree fourth order phase-field formulation for 5 representative numerical examples. Computational results will be compared to analytical solutions within linear elastic fracture mechanics and experimental data for three-dimensional crack propagation.
In the last part of this research, we present a phase-field model for fracture in Kirchoff-Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantageous over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected
pipes.

Briefly, the two basic questions that this research is supposed to answer are:
1. Howmuch fiber is needed and how fibers should be distributed through a fiber reinforced composite (FRC) structure in order to obtain the optimal and reliable structural response?
2. How do uncertainties influence the optimization results and reliability of the structure?
Giving answer to the above questions a double stage sequential optimization algorithm for finding the optimal content of short fiber reinforcements and their distribution in the composite structure, considering uncertain design parameters, is presented. In the first stage, the optimal amount of short fibers in a FRC structure with uniformly distributed fibers is conducted in the framework of a Reliability Based Design Optimization (RBDO) problem. Presented model considers material, structural and modeling uncertainties. In the second stage, the fiber distribution optimization (with the aim to further increase in structural reliability) is performed by defining a fiber distribution function through a Non-Uniform Rational BSpline (NURBS) surface. The advantages of using the NURBS surface as a fiber distribution function include: using the same data set for the optimization and analysis; high convergence rate due to the smoothness of the NURBS; mesh independency of the optimal layout; no need for any post processing technique and its non-heuristic nature. The output of stage 1 (the optimal fiber content for homogeneously distributed fibers) is considered as the input of stage 2. The output of stage 2 is the Reliability Index (b ) of the structure with the optimal fiber content and distribution.
First order reliability method (in order to approximate the limit state function) as well as different material models including Rule of Mixtures, Mori-Tanaka, energy-based approach and stochastic multi-scales are implemented in different examples. The proposed combined model is able to capture the role of available uncertainties in FRC structures through a computationally efficient algorithm using all sequential, NURBS and sensitivity based techniques. The methodology is successfully implemented for interfacial shear stress optimization in sandwich beams and also for optimization of the internal cooling channels in a ceramic matrix composite.
Finally, after some changes and modifications by combining Isogeometric Analysis, level set and point wise density mapping techniques, the computational framework is extended for topology optimization of piezoelectric / flexoelectric materials.

Piezoelectric materials are used in several applications as sensors and actuators where they experience high stress and electric field concentrations as a result of which they may fail due to fracture. Though there are many analytical and experimental works on piezoelectric fracture mechanics. There are very few studies about damage detection, which is an interesting way to prevent the failure of these ceramics.
An iterative method to treat the inverse problem of detecting cracks and voids in piezoelectric structures is proposed. Extended finite element method (XFEM) is employed for solving the inverse problem as it allows the use of a single regular mesh for large number of iterations with different flaw geometries.
Firstly, minimization of cost function is performed by Multilevel Coordinate Search (MCS) method. The XFEM-MCS methodology is applied to two dimensional electromechanical problems where flaws considered are straight cracks and elliptical voids. Then a numerical method based on combination of classical shape derivative and level set method for front propagation used in structural optimization is utilized to minimize the cost function. The results obtained show that the XFEM-level set methodology is effectively able to determine the number of voids in a piezoelectric structure and its corresponding locations.
The XFEM-level set methodology is improved to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure. The material interfaces are implicitly represented by level sets which are identified by applying regularisation using total variation penalty terms. The formulation is presented for three dimensional structures and inclusions made of different materials are detected by using multiple level sets. The results obtained prove that the iterative procedure proposed can determine the location and approximate shape of material subdomains in the presence of higher noise levels.
Piezoelectric nanostructures exhibit size dependent properties because of surface elasticity and surface piezoelectricity. Initially a study to understand the influence of surface elasticity on optimization of nano elastic beams is performed. The boundary of the nano structure is implicitly represented by a level set function, which is considered as the design variable in the optimization process. Two objective functions, minimizing the total potential energy of a nanostructure subjected to a material volume constraint and minimizing the least square error compared to a target
displacement, are chosen for the numerical examples. The numerical examples demonstrate the importance of size and aspect ratio in determining how surface effects impact the optimized topology of nanobeams.
Finally a conventional cantilever energy harvester with a piezoelectric nano layer is analysed. The presence of surface piezoelectricity in nano beams and nano plates leads to increase in electromechanical coupling coefficient. Topology optimization of these piezoelectric structures in an energy harvesting device to further increase energy conversion using appropriately modified XFEM-level set algorithm is performed .

The phenomenon of aerodynamic instability caused by the wind is usually a major design criterion for long-span cable-supported bridges. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary, therefore, requires accurate and robust models. The complexity and uncertainty of models for such engineering problems demand strategies for model assessment. This study is an attempt to use the concepts of sensitivity and uncertainty analyses to assess the aeroelastic instability prediction models for long-span bridges. The state-of-the-art theory concerning the determination of the flutter stability limit is presented. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of structural and aerodynamic models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the coupled model.

Methods based on B-splines for model representation, numerical analysis and image registration
(2015)

The thesis consists of inter-connected parts for modeling and analysis using newly developed isogeometric methods. The main parts are reproducing kernel triangular B-splines, extended isogeometric analysis for solving weakly discontinuous problems, collocation methods using superconvergent points, and B-spline basis in image registration applications.
Each topic is oriented towards application of isogeometric analysis basis functions to ease the process of integrating the modeling and analysis phases of simulation.
First, we develop reproducing a kernel triangular B-spline-based FEM for solving PDEs. We review the triangular B-splines and their properties. By definition, the triangular basis function is very flexible in modeling complicated domains. However, instability results when it is applied for analysis. We modify the triangular B-spline by a reproducing kernel technique, calculating a correction term for the triangular kernel function from the chosen surrounding basis. The improved triangular basis is capable to obtain the results with higher accuracy and almost optimal convergence rates.
Second, we propose an extended isogeometric analysis for dealing with weakly discontinuous problems such as material interfaces. The original IGA is combined with XFEM-like enrichments which are continuous functions themselves but with discontinuous derivatives. Consequently, the resulting solution space can approximate solutions with weak discontinuities. The method is also applied to curved material interfaces, where the inverse mapping and the curved triangular elements are considered.
Third, we develop an IGA collocation method using superconvergent points. The collocation methods are efficient because no numerical integration is needed. In particular when higher polynomial basis applied, the method has a lower computational cost than Galerkin methods. However, the positions of the collocation points are crucial for the accuracy of the method, as they affect the convergent rate significantly. The proposed IGA collocation method uses superconvergent points instead of the traditional Greville abscissae points. The numerical results show the proposed method can have better accuracy and optimal convergence rates, while the traditional IGA collocation has optimal convergence only for even polynomial degrees.
Lastly, we propose a novel dynamic multilevel technique for handling image registration. It is application of the B-spline functions in image processing. The procedure considered aims to align a target image from a reference image by a spatial transformation. The method starts with an energy function which is the same as a FEM-based image registration. However, we simplify the solving procedure, working on the energy function directly. We dynamically solve for control points which are coefficients of B-spline basis functions. The new approach is more simple and fast. Moreover, it is also enhanced by a multilevel technique in order to prevent instabilities. The numerical testing consists of two artificial images, four real bio-medical MRI brain and CT heart images, and they show our registration method is accurate, fast and efficient, especially for large deformation problems.

One major research focus in the Material Science and Engineering Community in the past decade has been to obtain a more fundamental understanding on the phenomenon 'material failure'. Such an understanding is critical for engineers and scientists developing new materials with higher strength and toughness, developing robust designs against failure, or for those concerned with an accurate estimate of a component's design life. Defects like cracks and dislocations evolve at
nano scales and influence the macroscopic properties such as strength, toughness and ductility of a material. In engineering applications, the global response of the system is often governed by the behaviour at the smaller length scales. Hence, the sub-scale behaviour must be computed accurately for good predictions of the full scale behaviour.
Molecular Dynamics (MD) simulations promise to reveal the fundamental mechanics of material failure by modeling the atom to atom interactions. Since the atomistic dimensions are of the order of Angstroms ( A), approximately 85 billion atoms are required to model a 1 micro- m^3 volume of Copper. Therefore, pure atomistic models are prohibitively expensive with everyday engineering computations involving macroscopic cracks and shear bands, which are much larger than the atomistic length and time scales. To reduce the computational effort, multiscale methods are required, which are able to couple a continuum description of the structure with an atomistic description. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale, whilst a self-consistent continuum model elsewhere.
Many multiscale methods for fracture are developed for "fictitious" materials based on "simple" potentials such as the Lennard-Jones potential. Moreover, multiscale methods for evolving cracks are rare. Efficient methods to coarse grain the fine scale defects are missing. However, the existing multiscale methods for fracture do not adaptively adjust the fine scale domain as the crack propagates. Most methods, therefore only "enlarge" the fine scale domain and therefore drastically increase computational cost. Adaptive adjustment requires the fine scale domain to be refined and coarsened. One of the major difficulties in multiscale methods for fracture is to up-scale fracture related material information from the fine scale to the coarse scale, in particular for complex crack problems. Most of the existing approaches therefore were applied to examples with comparatively few macroscopic cracks.
Key contributions
The bridging scale method is enhanced using the phantom node method so that cracks can be modeled at the coarse scale. To ensure self-consistency in the bulk, a virtual atom cluster is devised providing the response of the intact material at the coarse scale. A molecular statics model is employed in the fine scale where crack propagation is modeled by naturally breaking the bonds. The fine scale and coarse scale models are coupled by enforcing the displacement boundary conditions on the ghost atoms. An energy criterion is used to detect the crack tip location. Adaptive refinement and coarsening schemes are developed and implemented during the crack propagation. The results were observed to be in excellent agreement with the pure atomistic simulations. The developed multiscale method is one of the first adaptive multiscale method for fracture.
A robust and simple three dimensional coarse graining technique to convert a given atomistic region into an equivalent coarse region, in the context of multiscale fracture has been developed. The developed method is the first of its kind. The developed coarse graining technique can be applied to identify and upscale the defects like: cracks, dislocations and shear bands. The current method has been applied to estimate the equivalent coarse scale models of several complex fracture patterns arrived from the pure atomistic simulations. The upscaled fracture pattern agree well with the actual fracture pattern. The error in the potential energy of the pure atomistic and the coarse grained model was observed to be acceptable.
A first novel meshless adaptive multiscale method for fracture has been developed. The phantom node method is replaced by a meshless differential reproducing kernel particle method. The differential reproducing kernel particle method is comparatively more expensive but allows for a more "natural" coupling between the two scales due to the meshless interpolation functions. The higher order continuity is also beneficial. The centro symmetry parameter is used to detect the crack tip location. The developed multiscale method is employed to study the complex crack propagation. Results based on the meshless adaptive multiscale method were observed to be in excellent agreement with the pure atomistic simulations.
The developed multiscale methods are applied to study the fracture in practical materials like Graphene and Graphene on Silicon surface. The bond stretching and the bond reorientation were observed to be the net mechanisms of the crack growth in Graphene. The influence of time step on the crack propagation was studied using two different time steps. Pure atomistic simulations of fracture in Graphene on Silicon surface are presented. Details of the three dimensional multiscale method to study the fracture in Graphene on Silicon surface are discussed.

Nanostructured materials are extensively applied in many fields of material science for new industrial applications, particularly in the automotive, aerospace industry due to their exceptional physical and mechanical properties. Experimental testing of nanomaterials is expensive, timeconsuming,challenging and sometimes unfeasible. Therefore,computational simulations have been employed as alternative method to predict macroscopic material properties. The behavior of polymeric nanocomposites (PNCs) are highly complex.
The origins of macroscopic material properties reside in the properties and interactions taking place on finer scales. It is therefore essential to use multiscale modeling strategy to properly account for all large length and time scales associated with these material systems, which across many orders of magnitude. Numerous multiscale models of PNCs have been established, however, most of them connect only two scales. There are a few multiscale models for PNCs bridging four length scales (nano-, micro-, meso- and macro-scales). In addition, nanomaterials are stochastic in nature and the prediction of macroscopic mechanical properties are influenced by many factors such as fine-scale features. The predicted mechanical properties obtained by traditional approaches significantly deviate from the measured values in experiments due to neglecting uncertainty of material features. This discrepancy is indicated that the effective macroscopic properties of materials are highly sensitive to various sources of uncertainty, such as loading and boundary conditions and material characteristics, etc., while very few stochastic multiscale models for PNCs have been developed. Therefore, it is essential to construct PNC models within the framework of stochastic modeling and quantify the stochastic effect of the input parameters on the macroscopic mechanical properties of those materials.
This study aims to develop computational models at four length scales (nano-, micro-, meso- and macro-scales) and hierarchical upscaling approaches bridging length scales from nano- to macro-scales. A framework for uncertainty quantification (UQ) applied to predict the mechanical properties
of the PNCs in dependence of material features at different scales is studied. Sensitivity and uncertainty analysis are of great helps in quantifying the effect of input parameters, considering both main and interaction effects, on the mechanical properties of the PNCs. To achieve this major
goal, the following tasks are carried out:
At nano-scale, molecular dynamics (MD) were used to investigate deformation mechanism of glassy amorphous polyethylene (PE) in dependence of temperature and strain rate. Steered molecular dynamics (SMD)were also employed to investigate interfacial characteristic of the PNCs.
At mico-scale, we developed an atomistic-based continuum model represented by a representative volume element (RVE) in which the SWNT’s properties and the SWNT/polymer interphase are modeled at nano-scale, the surrounding polymer matrix is modeled by solid elements. Then, a two-parameter model was employed at meso-scale. A hierarchical multiscale approach has been developed to obtain the structure-property relations at one length scale and transfer the effect to the higher length
scales. In particular, we homogenized the RVE into an equivalent fiber.
The equivalent fiber was then employed in a micromechanical analysis (i.e. Mori-Tanaka model) to predict the effective macroscopic properties of the PNC. Furthermore, an averaging homogenization process was also used to obtain the effective stiffness of the PCN at meso-scale.
Stochastic modeling and uncertainty quantification consist of the following ingredients:
- Simple random sampling, Latin hypercube sampling, Sobol’ quasirandom sequences, Iman and Conover’s method (inducing correlation in Latin hypercube sampling) are employed to generate independent and dependent sample data, respectively.
- Surrogate models, such as polynomial regression, moving least squares (MLS), hybrid method combining polynomial regression and MLS, Kriging regression, and penalized spline regression, are employed as an approximation of a mechanical model. The advantage of the surrogate models is the high computational efficiency and robust as they can be constructed from a limited amount of available data.
- Global sensitivity analysis (SA) methods, such as variance-based methods for models with independent and dependent input parameters, Fourier-based techniques for performing variance-based methods and partial derivatives, elementary effects in the context of local SA, are used to quantify the effects of input parameters and their interactions on the mechanical properties of the PNCs. A bootstrap technique is used to assess the robustness of the global SA methods with respect to their performance.
In addition, the probability distribution of mechanical properties are determined by using the probability plot method. The upper and lower bounds of the predicted Young’s modulus according to 95 % prediction intervals were provided.
The above-mentioned methods study on the behaviour of intact materials. Novel numerical methods such as a node-based smoothed extended finite element method (NS-XFEM) and an edge-based smoothed phantom node method (ES-Phantom node) were developed for fracture problems. These methods can be used to account for crack at macro-scale for future works. The predicted mechanical properties were validated and verified. They show good agreement with previous experimental and simulations results.

In this study, an application of evolutionary multi-objective optimization algorithms on the optimization of sandwich structures is presented. The solution strategy is known as Elitist Non-Dominated Sorting Evolution Strategy (ENSES) wherein Evolution Strategies (ES) as Evolutionary Algorithm (EA) in the elitist Non-dominated Sorting Genetic algorithm (NSGA-II) procedure. Evolutionary algorithm seems a compatible approach to resolve multi-objective optimization problems because it is inspired by natural evolution, which closely linked to Artificial Intelligence (AI) techniques and elitism has shown an important factor for improving evolutionary multi-objective search. In order to evaluate the notion of performance by ENSES, the well-known study case of sandwich structures are reconsidered. For Case 1, the goals of the multi-objective optimization are minimization of the deflection and the weight of the sandwich structures. The length, the core and skin thicknesses are the design variables of Case 1. For Case 2, the objective functions are the fabrication cost, the beam weight and the end deflection of the sandwich structures. There are four design variables i.e., the weld height, the weld length, the beam depth and the beam width in Case 2. Numerical results are presented in terms of Paretooptimal solutions for both evaluated cases.

We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger–Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing its unique mechanical properties, such as a negative Poisson's ratio. In particular, we show that the cross-pucker interaction enables the pucker to act as a re-entrant hinge, which expands in the lateral direction when it is stretched in the longitudinal direction. As a consequence, single-layered black phosphorus has a negative Poisson's ratio in the direction perpendicular to the atomic plane. As an additional demonstration of the impact of the cross-pucker interaction, we show that it is also the key factor that enables capturing the edge stress-induced bending of single-layered black phosphorus that has been reported in ab initio calculations.

From the design experiences of arch dams in the past, it has significant practical value to carry out the shape optimization of arch dams, which can fully make use of material characteristics and reduce the cost of constructions. Suitable variables need to be chosen to formulate the objective function, e.g. to minimize the total volume of the arch dam. Additionally a series of constraints are derived and a reasonable and convenient penalty function has been formed, which can easily enforce the characteristics of constraints and optimal design. For the optimization method, a Genetic Algorithm is adopted to perform a global search. Simultaneously, ANSYS is used to do the mechanical analysis under the coupling of thermal and hydraulic loads. One of the constraints of the newly designed dam is to fulfill requirements on the structural safety. Therefore, a reliability analysis is applied to offer a good decision supporting for matters concerning predictions of both safety and service life of the arch dam. By this, the key factors which would influence the stability and safety of arch dam significantly can be acquired, and supply a good way to take preventive measures to prolong ate the service life of an arch dam and enhances the safety of structure.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!

A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.

The polymeric clay nanocomposites are a new class of materials of which recently have become the centre of attention due to their superior mechanical and physical properties. Several studies have been performed on the mechanical characterisation of these nanocomposites; however most of those studies have neglected the effect of the interfacial region between the clays and the matrix despite of its significant influence on the mechanical performance of the nanocomposites.
There are different analytical methods to calculate the overall elastic material properties of the composites. In this study we use the Mori-Tanaka method to determine the overall stiffness of the composites for simple inclusion geometries of cylinder and sphere. Furthermore, the effect of interphase layer on the overall properties of composites is calculated. Here, we intend to get ounds for the effective mechanical properties to compare with the analytical results. Hence, we use linear displacement boundary conditions (LD) and uniform traction boundary conditions (UT) accordingly. Finally, the analytical results are compared with numerical results and they are in a good agreement.
The next focus of this dissertation is a computational approach with a hierarchical multiscale method on the mesoscopic level. In other words, in this study we use the stochastic analysis and computational homogenization method to analyse the effect of thickness and stiffness of the interfacial region on the overall elastic properties of the clay/epoxy nanocomposites. The results show that the increase in interphase thickness, reduces the stiffness of the clay/epoxy naocomposites and this decrease becomes significant in higher clay contents. The results of the sensitivity analysis prove that the stiffness of the interphase layer has more significant effect on the final stiffness of nanocomposites. We also validate the results with the available experimental results from the literature which show good agreement.

Structural vibration control of high-speed railway bridges using tuned mass dampers, semi-active tuned mass dampers, fluid viscous dampers and magnetorheological dampers to reduce resonant structural vibrations is studied. In this work, the addressed main issues include modeling of the dynamic interaction of the structures, optimization of the parameters of the dampers and comparison of their efficiency.
A new approach to optimize multiple tuned mass damper systems on an uncertain model is proposed based on the H-infinity optimization criteria and the DK iteration procedure with norm-bounded uncertainties in frequency domain. The parameters of tuned mass dampers are optimized directly and simultaneously on different modes contributing significantly to the multi-resonant peaks to explore the different possible combinations of parameters. The effectiveness of the present method is also evaluated through comparison with a previous method.
In the case of semi-active tuned mass dampers, an optimization algorithm is derived to control the magnetorheological damper in these semi-active damping systems. The use of the proposed algorithm can generate various combinations of control gains and state variables. This can lead to the improvement of the ability of MR dampers to track the desired control forces. An uncertain model to reduce detuning effects is also considered in this work.
Next, for fluid viscous dampers, in order to tune the optimal parameters of fluid viscous dampers to the vicinity of the exact values, analytical formulae which can include structural damping are developed based on the perturbation method. The proposed formulae can also be considered as an improvement of the previous analytical formulae, especially for bridge beams with large structural damping.
Finally, a new combination of magnetorheological dampers and a double-beam system to improve the performance of the primary structure vibration is proposed. An algorithm to control magnetorheological dampers in this system is developed by using standard linear matrix inequality techniques. Weight functions as a loop shaping procedure are also introduced in the feedback controllers to improve the tracking ability of magnetorheological damping forces. To this end, the effectiveness of magnetorheological dampers controlled by the proposed scheme, along with the effects of the uncertain and time-delay parameters on the models, are evaluated through numerical simulations.
Additionally, a comparison of the dampers based on their performance is also considered in this work.

The focus of the thesis is to process measurements acquired from a continuous
monitoring system at a railway bridge. Temperature, strain and ambient vibration
records are analysed and two main directions of investigation are pursued.
The first and the most demanding task is to develop processing routines able to extract modal parameters from ambient vibration measurements. For this purpose, reliable experimental models are achieved on the basis of a stochastic system identification(SSI) procedure. A fully automated algorithm based on a three-stage clustering is implemented to perform a modal parameter estimation for every single measurement. After selecting a baseline of modal parameters, the evolution of eigenfrequencies is
studied and correlated to environmental and operational factors.
The second aspect deals with the structural response to passing trains. Corresponding
triggered records of strain and temperature are processed and their assessment is
accomplished using the average strains induced by each train as the reference parameter.
Three influences due to speed, temperature and loads are distinguished and treated individually. An attempt to estimate the maximum response variation due to each factor is also carried out.

This thesis concerns the physical and mechanical interactions on carbon nanotubes and polymers by multiscale modeling. CNTs have attracted considerable interests in view of their unique mechanical, electronic, thermal, optical and structural properties, which enable them to have many potential applications.
Carbon nanotube exists in several structure forms, from individual single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) to carbon nanotube bundles and networks. The mechanical properties of SWCNTs and MWCNTs have been extensively studied by continuum modeling and molecular dynamics (MD) simulations in the past decade since the properties could be important in the CNT-based devices. CNT bundles and networks feature outstanding mechanical performance and hierarchical structures and network topologies, which have been taken as a potential saving-energy material. In the synthesis of nanocomposites, the formation of the CNT bundles and networks is a challenge to remain in understanding how to measure and predict the properties of such large systems. Therefore, a mesoscale method such as a coarse-grained (CG) method should be developed to study the nanomechanical characterization of CNT bundles and networks formation.
In this thesis, the main contributions can be written as follows: (1) Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. (2) The CG potentials of SWCNTs are established by a molecular mechanics model. (3) The binding energy between two parallel and crossing SWCNTs and MWCNTs is obtained by continuum modeling of the van der Waals interaction between them. Crystalline and amorphous polymers are increasingly used in modern industry as tructural materials due to its important mechanical and physical properties. For crystalline polyethylene (PE), despite its importance and the studies of available MD simulations and continuum models, the link between molecular and continuum descriptions of its mechanical properties is still not well established. For amorphous polymers, the chain length and temperature effect on their
elastic and elastic-plastic properties has been reported based on the united-atom (UA) and CG MD imulations in our previous work. However, the effect of the CL and temperature on the failure behavior is not understood well yet. Especially, the failure behavior under shear has been scarcely reported in previous work. Therefore, understanding the molecular origins of macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge.
In this thesis, the main contributions can be written as follows: (1) An analytical molecular mechanics model is developed to obtain the size-dependent elastic properties of crystalline PE.
(2) We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials. (3) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers are scrutinized using molecular dynamics simulations. Finally, the influence of polymer wrapped two neighbouring SWNTs’ dispersion on their load transfer is investigated by molecular dynamics (MD) simulations, in which the SWNTs' position, the polymer chain length and the temperature on the interaction force is systematically studied.

This paper presents several aspects of characterization of welding heat source parameters in Goldak’s double ellipsoidal model using Sysweld simulation of welding of two overlapping beads on a substrate steel plate. The overlap percentages ranged from 40% to 80% in increments of 10%. The new material properties of the fused metal were characterized using Weldware and their continuous cooling transformation curves. The convective and radiative heat transfer coefficients as well as the cooling time t8/5 were estimated using numerical formulations from relevant standards. The effects of the simulation geometry and mesh discretization were evaluated in terms of the factor F provided in Sysweld. Eventually, the parameters of Goldak’s double ellipsoidal heat source model were determined for the welding simulation of overlapping beads on the plate and the simulated bead geometry, extent of the molten pool and the HAZ were compared with the macrographs of cross-sections of the experimental weldments. The results showed excellent matching, thus verifying this methodology for determination of welding heat source parameters.

This paper extends further the strain smoothing technique in finite elements to 8-noded hexahedral elements (CS-FEM-H8). The idea behind the present method is similar to the cell-based smoothed 4-noded quadrilateral finite elements (CS-FEM-Q4). In CSFEM, the smoothing domains are created based on elements, and each element can be further subdivided into 1 or several smoothing cells. It is observed that: 1) The CS-FEM using a single smoothing cell can produce higher stress accuracy, but insufficient rank and poor displacement accuracy; 2) The CS-FEM using several smoothing cells has proper rank, good displacement accuracy, but lower stress accuracy, especially for nearly incompressible and bending dominant problems. We therefore propose 1) an extension of strain smoothing to 8-noded hexahedral elements and 2) an alternative CS-FEM form, which associates the single smoothing cell issue with multi-smoothing cell one via a stabilization technique. Several numerical examples are provided to show the reliability and accuracy of the present formulation.

This paper proposes an adaptive atomistic- continuum numerical method for quasi-static crack growth. The phantom node method is used to model the crack in the continuum region and a molecular statics model is used near the crack tip. To ensure self-consistency in the bulk, a virtual atom cluster is used to model the material of the coarse scale. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively enlarged as the crack propagates and the region behind the crack tip is adaptively coarsened. An energy criterion is used to detect the crack tip location. The triangular lattice in the fine scale region corresponds to the lattice structure of the (111) plane of an FCC crystal. The Lennard-Jones potential is used to model the atom–atom interactions. The method is implemented in two dimensions. The results are compared to pure atomistic simulations; they show excellent agreement.