### Refine

#### Document Type

- Conference Proceeding (146)
- Report (9)
- Article (1)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (82)
- Graduiertenkolleg 1462 (31)
- Professur Angewandte Mathematik (13)
- Institut für Strukturmechanik (12)
- Professur Computergestütztes kooperatives Arbeiten (9)
- Institut für Konstruktiven Ingenieurbau (4)
- Professur Informatik im Bauwesen (4)
- Juniorprofessur Stochastik und Optimierung (3)
- Institut für Mathematik-Bauphysik (2)
- Professur Computer Vision in Engineering (2)

#### Keywords

- Angewandte Informatik (156) (remove)

Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process.

In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.

We consider a structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.

In the past, several types of Fourier transforms in Clifford analysis have been studied. In this paper, first an overview of these different transforms is given. Next, a new equation in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of generalized Fourier transforms. Two solutions of this equation are studied in more detail, namely a vector-valued solution and a bivector-valued solution, as well as the associated integral transforms.

VARIATIONAL POSITING AND SOLUTION OF COUPLED THERMOMECHANICAL PROBLEMS IN A REFERENCE CONFIGURATION
(2015)

Variational formulation of a coupled thermomechanical problem of anisotropic solids for the case of non-isothermal finite deformations in a reference configuration is shown. The formulation of the problem includes: a condition of equilibrium flow of a deformation process in the reference configuration; an equation of a coupled heat conductivity in a variational form, in which an influence of deformation characteristics of a process on the temperature field is taken into account; tensor-linear constitutive relations for a hypoelastic material; kinematic and evolutional relations; initial and boundary conditions. Based on this formulation several axisymmetric isothermal and coupled problems of finite deformations of isotropic and anisotropic bodies are solved. The solution of coupled thermomechanical problems for a hollow cylinder in case of finite deformation showed an essential influence of coupling on distribution of temperature, stresses and strains. The obtained solutions show the development of stressstrain state and temperature changing in axisymmetric bodies in the case of finite deformations.

Portugal is one of the European countries with higher spatial and population freeway network coverage. The sharp growth of this network in the last years instigates the use of methods of analysis and the evaluation of their quality of service in terms of the traffic performance, typically performed through internationally accepted methodologies, namely that presented in the Highway Capacity Manual (HCM). Lately, the use of microscopic traffic simulation models has been increasingly widespread. These models simulate the individual movement of the vehicles, allowing to perform traffic analysis. The main target of this study was to verify the possibility of using microsimulation as an auxiliary tool in the adaptation of the methodology by HCM 2000 to Portugal. For this purpose, were used the microscopic simulators AIMSUN and VISSIM for the simulation of the traffic circulation in the A5 Portuguese freeway. The results allowed the analysis of the influence of the main geometric and traffic factors involved in the methodology by HCM 2000. In conclusion, the study presents the main advantages and limitations of the microsimulators AIMSUN and VISSIM in modelling the traffic circulation in Portuguese freeways. The main limitation is that these microsimulators are not able to simulate explicitly some of the factors considered in the HCM 2000 methodology, which invalidates their direct use as a tool in the quantification of those effects and, consequently, makes the direct adaptation of this methodology to Portugal impracticable.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order.

In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building’s requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access.

A central issue for the autonomous navigation of mobile robots is to map unknown environments while simultaneously estimating its position within this map. This chicken-eggproblem is known as simultaneous localization and mapping (SLAM). Asctec’s quadrotor Pelican is a powerful and flexible research UAS (unmanned aircraft system) which enables the development of new real-time on-board algorithms for SLAM as well as autonomous navigation. The relative UAS pose estimation for SLAM, usually based on low-cost sensors like inertial measurement units (IMU) and barometers, is known to be affected by high drift rates. In order to significantly reduce these effects, we incorporate additional independent pose estimation techniques using exteroceptive sensors. In this article we present first pose estimation results using a stereo camera setup as well as a laser range finder, individually. Even though these methods fail in few certain configurations we demonstrate their effectiveness and value for the reduction of IMU drift rates and give an outlook for further works towards SLAM.

The aim of our contribution is to clarify the relation between totally regular variables and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called monogenic power-like functions) in Hypercomplex Function Theory. After their introduction in 2006 by two of the authors of this note on the occasion of the 17th IKM, the latter have been subject of investigations by different authors with different methods and in various contexts. The former concept, introduced by R. Delanghe in 1970 and later also studied by K. Gürlebeck in 1982 for the case of quaternions, has some obvious relationship with the latter, since it describes a set of linear hypercomplex holomorphic functions all power of which are also hypercomplex holomorphic. Due to the non-commutative nature of the underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial properties as it is for the integer powers of the complex variable z=x+ iy. Simple examples show also, that not every totally regular variable and its powers form an Appell sequence and vice versa. Under some very natural normalization condition the set of all para-vector valued totally regular variables which are also Appell sequences will completely be characterized. In some sense the result can also be considered as an answer to a remark of K. Habetha in chapter 16: Function theory in algebras of the collection Complex analysis. Methods, trends, and applications, Akademie-Verlag Berlin, (Eds. E. Lanckau and W. Tutschke) 225-237 (1983) on the use of exact copies of several complex variables for the power series representation of any hypercomplex holomorphic function.

A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.

It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics.

The stress state of a piecewise-homogeneous elastic body, which has a semi-infinite crack along the interface, under in-plane and antiplane loads is considered. One of the crack edges is reinforced by a rigid patch plate on a finite interval adjacent to the crack tip. The crack edges are loaded with specified stresses. The body is stretched at infinity by specified stresses. External forces with a given principal vector and moment act on the patch plate. The problem reduces to a Riemann-Hilbert boundary-value matrix problem with a piecewise-constant coefficient for two complex potentials in the plane case and for one in the antiplane case. The complex potentials are found explicitly using a Gaussian hypergeometric function. The stress state of the body close to the ends of the patch plate, one of which is also simultaneously the crack tip, is investigated. Stress intensity factors near the singular points are determined.

This paper is focused on the first numerical tests for coupling between analytical solution and finite element method on the example of one problem of fracture mechanics. The calculations were done according to ideas proposed in [1]. The analytical solutions are constructed by using an orthogonal basis of holomorphic and anti-holomorphic functions. For coupling with finite element method the special elements are constructed by using the trigonometric interpolation theorem.

THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION
(2012)

Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data.

This article presents the Rigid Finite Element Method in the calculation of reinforced concrete beam deflection with cracks. Initially, this method was used in the shipbuilding industry. Later, it was adapted in the homogeneous calculations of the bar structures. In this method, rigid mass discs serve as an element model. In the flat layout, three generalized coordinates (two translational and one rotational) correspond to each disc. These discs are connected by elastic ties. The genuine idea is to take into account a discrete crack in the Rigid Finite Element Method. It consists in the suitable reduction of the rigidity in rotational ties located in the spots, where cracks occurred. The susceptibility of this tie results from the flexural deformability of the element and the occurrence of the crack. As part of the numerical analyses, the influence of cracks on the total deflection of beams was determined. Furthermore, the results of the calculations were compared to the results of the experiment. Overestimations of the calculated deflections against the measured deflections were found. The article specifies the size of the overestimation and describes its causes.

In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method.

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it with the well-known facts of harmonic analysis and Clifford analysis. In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic analysis is illustrated by the Fisher decomposition and the Howe duality for the space of spinor-valued polynomials in the Euclidean space under the so-called L-action. On the other hand, for Clifford algebra valued polynomials, we can consider another action, called in Clifford analysis the H-action. In the last section, we recall the Fisher decomposition for the H-action obtained recently. As in Clifford analysis the prominent role plays the Dirac equation in this case the basic set of equations is formed by the Hodge system. Moreover, analysis of Hodge systems can be viewed even as a refinement of Clifford analysis. In this note, we describe the Howe duality for the H-action. In particular, in Proposition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as the Lie superalgebra sl(2 1). Furthermore, Theorem 2 gives the corresponding multiplicity free decomposition with an explicit description of irreducible pieces.

THE FOURIER-BESSEL TRANSFORM
(2010)

In this paper we devise a new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced earlier. We show that this new integral transform satisfies operational formulae which are similar to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consisting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform.

Es wurde ein multi-touch interaktives Tabletop als Basistechnologie zur Exploration neuer Interaktionskonzepte für kooperative multi-touch Anwendungen entwickelt. In dieser Publikation stellen wir vor, wie ein kooperatives multi-touch interaktives Tabletop basierend auf günstiger Standard-Hardware mit geringem Realisierungsaufwand gebaut werden kann. Wir präsentieren eine Software-Anwendung, die wir dafür entwickelt haben. And wir berichten über Benutzerkommentare zum Tabletop und der Anwendung.

We briefly review and use the recent comprehensive research on the manifolds of square roots of −1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem.

Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are
unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results.
Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and
tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations.
Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given.

This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation.

Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme.

This paper presents a robust model updating strategy for system identification of wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sensitivity analysis using the elementary effects method is conducted. The formulation of the objective function is based on M¨uller-Slany’s strategy for multi-criteria functions. As a simulationbased optimization, a simulation adapter is developed to interface the simulation software ANSYS and the locally developed optimization software MOPACK. Model updating is firstly tested on the beam model of the rotor blade. The defect between the numerical model and the reference has been markedly reduced by the process of model updating. The effect of model updating becomes more pronounced in the comparison of the measured and the numerical properties of the wind turbine model. The deviations of the frequencies of the updated model are rather small. The complete comparison including the free vibration modes by the modal assurance criteria shows the excellent coincidence of the modal parameters of the updated model with the ones from the measurements. By successful implementation of the model validation via model updating, the applicability and effectiveness of the solution concept has been demonstrated.

Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model.

Polymer modification of mortar and concrete is a widely used technique in order to improve their durability properties. Hitherto, the main application fields of such materials are repair and restoration of buildings. However, due to the constant increment of service life requirements and the cost efficiency, polymer modified concrete (PCC) is also used for construction purposes. Therefore, there is a demand for studying the mechanical properties of PCC and entitative differences compared to conventional concrete (CC). It is significant to investigate whether all the assumed hypotheses and existing analytical formulations about CC are also valid for PCC. In the present study, analytical models available in the literature are evaluated. These models are used for estimating mechanical properties of concrete. The investigated property in this study is the modulus of elasticity, which is estimated with respect to the value of compressive strength. One existing database was extended and adapted for polymer-modified concrete mixtures along with their experimentally measured mechanical properties. Based on the indexed data a comparison between model predictions and experiments was conducted by calculation of forecast errors.

With the advances of the computer technology, structural optimization has become a prominent field in structural engineering. In this study an unconventional approach of structural optimization is presented which utilize the Energy method with Integral Material behaviour (EIM), based on the Lagrange’s principle of minimum potential energy. The equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured through minimization of the potential energy as an optimization problem. Imposing this problem as an additional constraint on a higher cost function of a structural property, a bilevel programming problem is formulated. The nested strategy of solution of the bilevel problem is used, treating the energy and the upper objective function as separate optimization problems. Utilizing the convexity of the potential energy, gradient based algorithms are employed for its minimization and the upper cost function is minimized using the gradient free algorithms, due to its unknown properties. Two practical examples are considered in order to prove the efficiency of the method. The first one presents a sizing problem of I steel section within encased composite cross section, utilizing the material nonlinearity. The second one is a discrete shape optimization of a steel truss bridge, which is compared to a previous study based on the Finite Element Method.

This paper deals with the modelling and the analysis of masonry vaults. Numerical FEM analyses are performed using LUSAS code. Two vault typologies are analysed (barrel and cross-ribbed vaults) parametrically varying geometrical proportions and constraints. The proposed model and the developed numerical procedure are implemented in a computer analysis. Numerical applications are developed to assess the model effectiveness and the efficiency of the numerical procedure. The main object of the present paper is the development of a computational procedure which allows to define 3D structural behaviour of masonry vaults. For each investigated example, the homogenized limit analysis approach has been employed to predict ultimate load and failure mechanisms. Finally, both a mesh dependence study and a sensitivity analysis are reported. Sensitivity analysis is conducted varying in a wide range mortar tensile strength and mortar friction angle with the aim of investigating the influence of the mechanical properties of joints on collapse load and failure mechanisms. The proposed computer model is validated by a comparison with experimental results available in the literature.

In recent years special hypercomplex Appell polynomials have been introduced by several authors and their main properties have been studied by different methods and with different objectives. Like in the classical theory of Appell polynomials, their generating function is a hypercomplex exponential function. The observation that this generalized exponential function has, for example, a close relationship with Bessel functions confirmed the practical significance of such an approach to special classes of hypercomplex differentiable functions. Its usefulness for combinatorial studies has also been investigated. Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences. Here we show how this opens the way for a more systematic study of the relation between some classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.

The numerical simulation of microstructure models in 3D requires, due to enormous d.o.f., significant resources of memory as well as parallel computational power. Compared to homogeneous materials, the material hetrogeneity on microscale induced by different material phases demand for adequate computational methods for discretization and solution process of the resulting highly nonlinear problem. To enable an efficient/scalable solution process of the linearized equation systems the heterogeneous FE problem will be described by a FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) discretization. The fundamental FETI-DP equation can be solved by a number of different approaches. In our approach the FETI-DP problem will be reformulated as Saddle Point system, by eliminating the primal and Lagrangian variables. For the reduced Saddle Point system, only defined by interior and dual variables, special Uzawa algorithms can be adapted for iteratively solving the FETI-DP saddle-point equation system (FETI-DP SPE). A conjugate gradient version of the Uzawa algorithm will be shown as well as some numerical tests regarding to FETI-DP discretization of small examples using the presented solution technique. Furthermore the inversion of the interior-dual Schur complement operator can be approximated using different techniques building an adequate preconditioning matrix and therewith leading to substantial gains in computing time efficiency.

What is nowadays called (classic) Clifford analysis consists in the establishment of a function theory for functions belonging to the kernel of the Dirac operator. While such functions can very well describe problems of a particle with internal SU(2)-symmetries, higher order symmetries are beyond this theory. Although many modifications (such as Yang-Mills theory) were suggested over the years they could not address the principal problem, the need of a n-fold factorization of the d’Alembert operator. In this paper we present the basic tools of a fractional function theory in higher dimensions, for the transport operator (alpha = 1/2 ), by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed.

The aim of this paper we discuss explicit series constructions for the fundamental solution of the Helmholtz operator on some important examples non-orientable conformally at manifolds. In the context of this paper we focus on higher dimensional generalizations of the Klein bottle which in turn generalize higher dimensional Möbius strips that we discussed in preceding works. We discuss some basic properties of pinor valued solutions to the Helmholtz equation on these manifolds.

Within the scheduling of construction projects, different, partly conflicting objectives have to be considered. The specification of an efficient construction schedule is a challenging task, which leads to a NP-hard multi-criteria optimization problem. In the past decades, so-called metaheuristics have been developed for scheduling problems to find near-optimal solutions in reasonable time. This paper presents a Simulated Annealing concept to determine near-optimal construction schedules. Simulated Annealing is a well-known metaheuristic optimization approach for solving complex combinatorial problems. To enable dealing with several optimization objectives the Pareto optimization concept is applied. Thus, the optimization result is a set of Pareto-optimal schedules, which can be analyzed for selecting exactly one practicable and reasonable schedule. A flexible constraint-based simulation approach is used to generate possible neighboring solutions very quickly during the optimization process. The essential aspects of the developed Pareto Simulated Annealing concept are presented in detail.

A practical framework for generating cross correlated fields with a specified marginal distribution function, an autocorrelation function and cross correlation coefficients is presented in the paper. The contribution promotes a recent journal paper [1]. The approach relies on well known series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigenproblem which must normally be solved in computing the series expansion into two smaller eigenproblems. Such decomposition represents a significant reduction of computational effort. Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The associated errors can be computed before performing simulations and it is shown that the errors happen especially in the cross correlation between distant points and that they are negligibly small in practical situations.

From passenger’s perspective, punctuality is one of the most important features of tram route operation. We present a stochastic simulation model with special focus on determining important factors of influence. The statistical analysis bases on large samples (sample size is nearly 2000) accumulated from comprehensive measurements on eight tram routes in Cracow. For the simulation, we are not only interested in average values but also in stochastic characteristics like the variance and other properties of the distribution. A realization of trams operations is assumed to be a sequence of running times between successive stops and times spent by tram at the stops divided in passengers alighting and boarding times and times waiting for possibility of departure . The running time depends on the kind of track separation including the priorities in traffic lights, the length of the section and the number of intersections. For every type of section, a linear mixed regression model describes the average running time and its variance as functions of the length of the section and the number of intersections. The regression coefficients are estimated by the iterative re-weighted least square method. Alighting and boarding time mainly depends on type of vehicle, number of passengers alighting and boarding and occupancy of vehicle. For the distribution of the time waiting for possibility of departure suitable distributions like Gamma distribution and Lognormal distribution are fitted.

SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS
(2010)

After mixing of concrete, the hardening starts by an exothermic chemical reaction known as hydration. As the reaction rate depends on the temperature the time in the description of the hydration is replaced by the maturity which is defined as an integral over a certain function depending on the temperature. The temperature distribution is governed by the heat equation with a right hand side depending on the maturity and the temperature itself. We compare of the performance of different time integration schemes of higher order with an automatic time step control. The simulation of the heat distribution is of importance as the development of mechanical properties is driven by the hydration. During this process it is possible that the tensile stresses exceed the tensile strength and cracks occur. The goal is to produce cheap concrete without cracks. Simple crack-criterions use only temperature differences, more involved ones are based on thermal stresses. If the criterion predicts cracks some changes in the input data are needed. This can be interpreted as optimization. The final goal will be to adopt model based optimization (in contrast to simulation based optimization) to the problem of the hydration of young concrete and the avoidance of cracks. The first step is the simulation of the hydration, which we focus in this paper.

In this paper three different formulations of a Bernoulli type free boundary problem are discussed. By analyzing the shape Hessian in case of matching data it is distinguished between well-posed and ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for discretizing the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is proven. In combination with a fast boundary element method efficient first and second order shape optimization algorithms are obtained.

In today’s information society the vast technical progress and the sinking cost of information and communication technology provide new opportunities for information supply, and new technical support for communication and cooperation over distance. These trends also entail challenges such as supplying information that is adequate for a particular person in a specific situation as well as managing communication among geographically distributed parties efficiently. Context-aware systems that use sensors in order to analyse their environment and to adapt their behaviour. Yet, adequate tools for developing sensor-based infrastructures are missing. We have designed and developed Sens-ation, an open and generic service-oriented platform, which provides powerful, yet easy-to-use, tools to software developers who want to develop context-aware, sensor-based infrastructures. The service-oriented paradigm of Sens-ation enables standardised communication within individual infrastructures, between infrastructures and their sensors, but also among distributed infrastructures. On a whole, Sens-ation facilitates the development allowing developers to concentrate on the semantics of their infrastructures, and to develop innovative concepts and implementations of context-aware systems.

SELECTION AND SCALING OF GROUND MOTION RECORDS FOR SEISMIC ANALYSIS USING AN OPTIMIZATION ALGORITHM
(2015)

The nonlinear time history analysis and seismic performance based methods require a set of scaled ground motions. The conventional procedure of ground motion selection is based on matching the motion properties, e.g. magnitude, amplitude, fault distance, and fault mechanism. The seismic target spectrum is only used in the scaling process following the random selection process. Therefore, the aim of the paper is to present a procedure to select a sets of ground motions from a built database of ground motions. The selection procedure is based on running an optimization problem using Dijkstra’s algorithm to match the selected set of ground motions to a target response spectrum. The selection and scaling procedure of optimized sets of ground motions is presented by examining the analyses of nonlinear single degree of freedom systems.

In spite of the extensive research in dynamic soil-structure interaction (SSI), there still exist miscon-ceptions concerning the role of SSI in the seismic performance of structures, especially the ones founded on soft soil. This is due to the fact that current analytical SSI models that are used to evaluate the influence of soil on the overall structural behavior are approximate models and may involve creeds and practices that are not always precise. This is especially true in the codified approaches which in-clude substantial approximations to provide simple frameworks for the design. As the direct numerical analysis requires a high computational effort, performing an analysis considering SSI is computationally uneconomical for regular design applications. This paper outlines the set up some milestones for evaluating SSI models. This will be achieved by investigating the different assumptions and involved factors, as well as varying the configurations of R/C moment-resisting frame structures supported by single footings which are subject to seismic excita-tions. It is noted that the scope of this paper is to highlight, rather than fully resolve, the above subject. A rough draft of the proposed approach is presented in this paper, whereas a thorough illustration will be carried out throughout the presentation in the course of the conference.

From the design experiences of arch dams in the past, it has significant practical value to carry out the shape optimization of arch dams, which can fully make use of material characteristics and reduce the cost of constructions. Suitable variables need to be chosen to formulate the objective function, e.g. to minimize the total volume of the arch dam. Additionally a series of constraints are derived and a reasonable and convenient penalty function has been formed, which can easily enforce the characteristics of constraints and optimal design. For the optimization method, a Genetic Algorithm is adopted to perform a global search. Simultaneously, ANSYS is used to do the mechanical analysis under the coupling of thermal and hydraulic loads. One of the constraints of the newly designed dam is to fulfill requirements on the structural safety. Therefore, a reliability analysis is applied to offer a good decision supporting for matters concerning predictions of both safety and service life of the arch dam. By this, the key factors which would influence the stability and safety of arch dam significantly can be acquired, and supply a good way to take preventive measures to prolong ate the service life of an arch dam and enhances the safety of structure.

The paper introduces a systematic construction management approach, supporting expansion of a specified construction process, both automatically and semi-automatically. Throughout the whole design process, many requirements must be taken into account in order to fulfil demands defined by clients. In implementing those demands into a design concept up to the execution plan, constraints such as site conditions, building code, and legal framework are to be considered. However, complete information, which is needed to make a sound decision, is not yet acquired in the early phase. Decisions are traditionally taken based on experience and assumptions. Due to a vast number of appropriate available solutions, particularly in building projects, it is necessary to make those decisions traceable. This is important in order to be able to reconstruct considerations and assumptions taken, should there be any changes in the future project’s objectives. The research will be carried out by means of building information modelling, where rules deriving from standard logics of construction management knowledge will be applied. The knowledge comprises a comprehensive interaction amongst bidding process, cost-estimation, construction site preparation as well as specific project logistics – which are usually still separately considered. By means of these rules, favourable decision taking regarding prefabrication and in-situ implementation can be justified. Modifications depending on the available information within current design stage will consistently be traceable.

In this paper experimental studies and numerical analysis carried out on reinforced concrete beam are partially reported. They aimed to apply the rigid finite element method to calculations for reinforced concrete beams using discrete crack model. Hence rotational ductility resulting from crack occurrence had to be determined. A relationship for calculating it in static equilibrium was proposed. Laboratory experiments proved that dynamic ductility is considerably smaller. Therefore scaling of the empirical parameter was carried out. Consequently a formula for its value depending on reinforcement ratio was obtained.

The topic of structural robustness is covered extensively in current literature in structural engineering. A few evaluation methods already exist. Since these methods are based on different evaluation approaches, the comparison is difficult. But all the approaches have one in common, they need a structural model which represents the structure to be evaluated. As the structural model is the basis of the robustness evaluation, there is the question if the quality of the chosen structural model is influencing the estimation of the structural robustness index. This paper shows what robustness in structural engineering means and gives an overview of existing assessment methods. One is the reliability based robustness index, which uses the reliability indices of a intact and a damaged structure. The second one is the risk based robustness index, which estimates the structural robustness by the usage of direct and indirect risk. The paper describes how these approaches for the evaluation of structural robustness works and which parameters will be used. Since both approaches needs a structural model for the estimation of the structural behavior and the probability of failure, it is necessary to think about the quality of the chosen structural model. Nevertheless, the chosen model has to represent the structure, the input factors and reflect the damages which occur. On the example of two different model qualities, it will be shown, that the model choice is really influencing the quality of the robustness index.

In construction engineering, a schedule’s input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project.

We investigate aspects of tram-network section reliability, which operates as a part of the model of whole city tram-network reliability. Here, one of the main points of interest is the character of the chronological development of the disturbances (namely the differences between time of departure provided in schedule and real time of departure) on subsequent sections during tram line operation. These developments were observed in comprehensive measurements done in Krakow, during one of the main transportation nodes (Rondo Mogilskie) rebuilding. All taken building activities cause big disturbances in tram lines operation with effects extended to neighboring sections. In a second part, the stochastic character of section running time will be analyzed more detailed. There will be taken into consideration sections with only one beginning stop and also with two or three beginning stops located at different streets at an intersection. Possibility of adding results from sections with two beginning stops to one set will be checked with suitable statistical tests which are used to compare the means of the two samples. Section running time may depend on the value of gap between two following trams and from the value of deviation from schedule. This dependence will be described by a multi regression formula. The main measurements were done in the city center of Krakow in two stages: before and after big changes in tramway infrastructure.

The theory of regular quaternionic functions of a reduced quaternionic variable is a 3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a reduced quaternionic variable. The analogues of the main theorems of complex analysis for the MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent series, approximation theorems and Cauchy type integral properties. The analogues of positive powers (inner spherical monogenics) are investigated: the set of recurrence formulas between the inner spherical monogenics and the explicit formulas are established. Some applications of the regular function in the elasticity theory and hydrodynamics are given.

Due to increasing numbers of wind energy converters, the accurate assessment of the lifespan of their structural parts and the entire converter system is becoming more and more paramount. Lifespan-oriented design, inspections and remedial maintenance are challenging because of their complex dynamic behavior. Wind energy converters are subjected to stochastic turbulent wind loading causing corresponding stochastic structural response and vibrations associated with an extreme number of stress cycles (up to 109 according to the rotation of the blades). Currently, wind energy converters are constructed for a service life of about 20 years. However, this estimation is more or less made by rule of thumb and not backed by profound scientific analyses or accurate simulations. By contrast, modern structural health monitoring systems allow an improved identification of deteriorations and, thereupon, to drastically advance the lifespan assessment of wind energy converters. In particular, monitoring systems based on artificial intelligence techniques represent a promising approach towards cost-efficient and reliable real-time monitoring. Therefore, an innovative real-time structural health monitoring concept based on software agents is introduced in this contribution. For a short time, this concept is also turned into a real-world monitoring system developed in a DFG joint research project in the authors’ institute at the Ruhr-University Bochum. In this paper, primarily the agent-based development, implementation and application of the monitoring system is addressed, focusing on the real-time monitoring tasks in the deserved detail.

The process of analysis and design in structural engineering requires the consideration of different partial models, for example loading, structural materials, structural elements, and analysis types. The various partial models are combined by coupling several of their components. Due to the large number of available partial models describing similar phenomena, many different model combinations are possible to simulate the same aspects of a structure. The challenging task of an engineer is to select a model combination that ensures a sufficient, reliable prognosis. In order to achieve this reliable prognosis of the overall structural behavior, a high individual quality of the partial models and an adequate coupling of the partial models is required. Several methodologies have been proposed to evaluate the quality of partial models for their intended application, but a detailed study of the coupling quality is still lacking. This paper proposes a new approach to assess the coupling quality of partial models in a quantitative manner. The approach is based on the consistency of the coupled data and applies for uni- and bidirectional coupled partial models. Furthermore, the influence of the coupling quality on the output quantities of the partial models is considered. The functionality of the algorithm and the effect of the coupling quality are demonstrated using an example of coupled partial models in structural engineering.

Quality is one of the most important properties of a product. Providing the optimal quality can reduce costs for rework, scrap, recall or even legal actions while satisfying customers demand for reliability. The aim is to achieve ``built-in'' quality within product development process (PDP). The common approach therefore is the robust design optimization (RDO). It uses stochastic values as constraint and/or objective to obtain a robust and reliable optimal design. In classical approaches the effort required for stochastic analysis multiplies with the complexity of the optimization algorithm. The suggested approach shows that it is possible to reduce this effort enormously by using previously obtained data. Therefore the support point set of an underlying metamodel is filled iteratively during ongoing optimization in regions of interest if this is necessary. In a simple example, it will be shown that this is possible without significant loss of accuracy.

Over the last decade, the technology of constructing buildings has been dramatically developed especially with the huge growth of CAD tools that help in modeling buildings, bridges, roads and other construction objects. Often quality control and size accuracy in the factory or on construction site are based on manual measurements of discrete points. These measured points of the realized object or a part of it will be compared with the points of the corresponding CAD model to see whether and where the construction element fits into the respective CAD model. This process is very complicated and difficult even when using modern measuring technology. This is due to the complicated shape of the components, the large amount of manually detected measured data and the high cost of manual processing of measured values. However, by using a modern 3D scanner one gets information of the whole constructed object and one can make a complete comparison against the CAD model. It gives an idea about quality of objects on the whole. In this paper, we present a case study of controlling the quality of measurement during the constructing phase of a steel bridge by using 3D point cloud technology. Preliminary results show that an early detection of mismatching between real element and CAD model could save a lot of time, efforts and obviously expenses.

Known as a sophisticated phenomenon in civil engineering problems, soil structure interaction has been under deep investigations in the field of Geotechnics. On the other hand, advent of powerful computers has led to development of numerous numerical methods to deal with this phenomenon, resulting in a wide variety of methods trying to simulate the behavior of the soil stratum. This survey studies two common approaches to model the soil’s behavior in a system consisting of a structure with two degrees of freedom, representing a two-storey frame structure made of steel, with the column resting on a pile embedded into sand in laboratory scale. The effect of soil simulation technique on the dynamic behavior of the structure is of major interest in the study. Utilized modeling approaches are the so-called Holistic method, and substitution of soil with respective impedance functions.

Presence, Privacy, and PRIMIFaces: Towards Selective Information Disclosure in Instant Messaging
(2008)

Efficient distant cooperation often requires spontaneous ad-hoc social interaction, which is only possible with adequate information on the prospective communication partner. This often requires disclosing and sharing personal information via tools such as instant messaging systems and can conflict with the users’ wishes for privacy. In this paper we present an initial study investigating this trade-off and discuss implications for the design of instant messaging systems. We present the functionality and design of the PRIMIFaces instant messaging prototype supporting flexible identity management and selective information disclosure.

One of the most promising and recent advances in computer-based planning is the transition from classical geometric modeling to building information modeling (BIM). Building information models support the representation, storage, and exchange of various information relevant to construction planning. This information can be used for describing, e.g., geometric/physical properties or costs of a building, for creating construction schedules, or for representing other characteristics of construction projects. Based on this information, plans and specifications as well as reports and presentations of a planned building can be created automatically. A fundamental principle of BIM is object parameterization, which allows specifying geometrical, numerical, algebraic and associative dependencies between objects contained in a building information model. In this paper, existing challenges of parametric modeling using the Industry Foundation Classes (IFC) as a federated model for integrated planning are shown, and open research questions are discussed.

PARAMETER IDENTIFICATION OF MESOSCALE MODELS FROM MACROSCOPIC TESTS USING BAYESIAN NEURAL NETWORKS
(2010)

In this paper, a parameter identification procedure using Bayesian neural networks is proposed. Based on a training set of numerical simulations, where the material parameters are simulated in a predefined range using Latin Hypercube sampling, a Bayesian neural network, which has been extended to describe the noise of multiple outputs using a full covariance matrix, is trained to approximate the inverse relation from the experiment (displacements, forces etc.) to the material parameters. The method offers not only the possibility to determine the parameters itself, but also the accuracy of the estimate and the correlation between these parameters. As a result, a set of experiments can be designed to calibrate a numerical model.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.

It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.

Steel structural design is an integral part of the building construction process. So far, various methods of design have been applied in practice to satisfy the design requirements. This paper attempts to acquire the Differential Evolution Algorithms in automatization of specific synthesis and rationalization of design process. The capacity of the Differential Evolution Algorithms to deal with continuous and/or discrete optimization of steel structures is also demonstrated. The goal of this study is to propose an optimal design of steel frame structures using built-up I-sections and/or a combination of standard hot-rolled profiles. All optimized steel frame structures in this paper generated optimization solutions better than the original solution designed by the manufacturer. Taking the criteria regarding the quality and efficiency of the practical design into consideration, the produced optimal design with the Differential Evolution Algorithms can completely replace conventional design because of its excellent performance.

The sizing of simple resonators like guitar strings or laser mirrors is directly connected to the wavelength and represents no complex optimisation problem. This is not the case with liquid-filled acoustic resonators of non-trivial geometries, where several masses and stiffnesses of the structure and the fluid have to fit together. This creates a scenario of many competing and interacting resonances varying in relative strength and frequency when design parameters change. Hence, the resonator design involves a parameter-tuning problem with many local optima. As its solution evolutionary algorithms (EA) coupled to a forced-harmonic FE simulation are presented. A new hybrid EA is proposed and compared to two state-of-theart EAs based on selected test problems. The motivating background is the search for better resonators suitable for sonofusion experiments where extreme states of matter are sought in collapsing cavitation bubbles.

Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed.

The Laguerre polynomials appear naturally in many branches of pure and applied mathematics and mathematical physics. Debnath introduced the Laguerre transform and derived some of its properties. He also discussed the applications in study of heat conduction and to the oscillations of a very long and heavy chain with variable tension. An explicit boundedness for some class of Laguerre integral transforms will be present.

Using a quaternionic reformulation of the electrical impedance equation, we consider a two-dimensional separable-variables conductivity function and, posing two different techniques, we obtain a special class of Vekua equation, whose general solution can be approach by virtue of Taylor series in formal powers, for which is possible to introduce an explicit Bers generating sequence.

In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus.

As numerical techniques for solving PDE or integral equations become more sophisticated, treatments of the generation of the geometric inputs should also follow that numerical advancement. This document describes the preparation of CAD data so that they can later be applied to hierarchical BEM or FEM solvers. For the BEM case, the geometric data are described by surfaces which we want to decompose into several curved foursided patches. We show the treatment of untrimmed and trimmed surfaces. In particular, we provide prevention of smooth corners which are bad for diffeomorphism. Additionally, we consider the problem of characterizing whether a Coons map is a diffeomorphism from the unit square onto a planar domain delineated by four given curves. We aim primarily at having not only theoretically correct conditions but also practically efficient methods. As for FEM geometric preparation, we need to decompose a 3D solid into a set of curved tetrahedra. First, we describe some method of decomposition without adding too many Steiner points (additional points not belonging to the initial boundary nodes of the boundary surface). Then, we provide a methodology for efficiently checking whether a tetrahedral transfinite interpolation is regular. That is done by a combination of degree reduction technique and subdivision. Along with the method description, we report also on some interesting practical results from real CAD data.

The paper is devoted to a study of properties of homogeneous solutions of massless field equation in higher dimensions. We first treat the case of dimension 4. Here we use the two-component spinor language (developed for purposes of general relativity). We describe how are massless field operators related to a higher spin analogues of the de Rham sequence - the so called Bernstein-Gel'fand-Gel'fand (BGG) complexes - and how are they related to the twisted Dirac operators. Then we study similar question in higher (even) dimensions. Here we have to use more tools from representation theory of the orthogonal group. We recall the definition of massless field equations in higher dimensions and relations to higher dimensional conformal BGG complexes. Then we discuss properties of homogeneous solutions of massless field equation. Using some recent techniques for decomposition of tensor products of irreducible $Spin(m)$-modules, we are able to add some new results on a structure of the spaces of homogenous solutions of massless field equations. In particular, we show that the kernel of the massless field equation in a given homogeneity contains at least on specific irreducible submodule.

Monogenic functions play a role in quaternion analysis similarly to that of holomorphic functions in complex analysis. A holomorphic function with nonvanishing complex derivative is a conformal mapping. It is well-known that in Rn+1, n ≥ 2 the set of conformal mappings is restricted to the set of Möbius transformations only and that the Möbius transformations are not monogenic. The paper deals with a locally geometric mapping property of a subset of monogenic functions with nonvanishing hypercomplex derivatives (named M-conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic constants admit a certain change of solid angles and vice versa, that change can characterize such mappings. In addition, we determine planes in which those mappings behave like conformal mappings in the complex plane.

The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960’s to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.

The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.

Since the 90-ties the Pascal matrix, its generalizations and applications have been in the focus of a great amount of publications. As it is well known, the Pascal matrix, the symmetric Pascal matrix and other special matrices of Pascal type play an important role in many scientific areas, among them Numerical Analysis, Combinatorics, Number Theory, Probability, Image processing, Sinal processing, Electrical engineering, etc. We present a unified approach to matrix representations of special polynomials in several hypercomplex variables (new Bernoulli, Euler etc. polynomials), extending results of H. Malonek, G.Tomaz: Bernoulli polynomials and Pascal matrices in the context of Clifford Analysis, Discrete Appl. Math. 157(4)(2009) 838-847. The hypercomplex version of a new Pascal matrix with block structure, which resembles the ordinary one for polynomials of one variable will be discussed in detail.

Building information modeling offers a huge potential for increasing the productivity and quality of construction planning processes. Despite its promising concept, this approach has not found widespread use. One of the reasons is the insufficient coupling of the structural models with the general building model. Instead, structural engineers usually set up a structural model that is independent from the building model and consists of mechanical models of reduced dimension. An automatic model generation, which would be valuable in case of model revisions is therefore not possible. This can be overcome by a volumetric formulation of the problem. A recent approach employed the p-version of the finite element method to this problem. This method, in conjunction with a volumetric formulation is suited to simulate the structural behaviour of both „thick“ solid bodies and thin-walled structures. However, there remains a notable discretization error in the numerical models. This paper therefore proposes a new approach for overcoming this situation. It sugggests the combination of the Isogeometric analysis together with the volumetric models in order to integrate the structural design into the digital, building model-centered planning process and reduce the discretization error. The concept of the isogeometric analysis consists, roughly, in the application of NURBS functions to represent the geometry and the shape functions of the elements. These functions possess some beneficial properties regarding numerical simulation. Their use, however, leads to some intricacies related to the setup of the stiffness matrix. This paper describes some of these properties.

NUMERICAL SIMULATION OF THERMO-HYGRAL ALKALI-SILICA REACTION MODEL IN CONCRETE AT THE MESOSCALE
(2010)

This research aims to model Alkali-Silica Reaction gel expansion in concrete under the influence of hygral and thermal loading, based on experimental results. ASR provokes a heterogeneous expansion in concrete leading to dimensional changes and eventually the premature failure of the concrete structure. This can result in map cracking on the concrete surface which will decrease the concrete stiffness. Factors that influence ASR are parameters such as the cement alkalinity, the number of deleterious silica from the aggregate used, concrete porosity, and external factors like temperature, humidity and external source of alkali from ingression of deicing salts. Uncertainties of the influential factors make ASR a difficult phenomenon to solve; hence my approach to this matter is to solve the problem using stochastic modelling, where a numerical simulation of concrete cross-section with integration of experimental results from Finger-Institute for Building Materials Science at the Bauhaus-Universität Weimar. The problem is formulated as a multi-field problem, combining heat transfer, fluid transfer and the reaction rate model with the mechanical stress field. Simulation is performed as a mesoscale model considering aggregates and mortar matrix. The reaction rate model will be conducted using experimental results from concrete expansions due to ASR gained from concrete prism tests. Expansive strains values for transient environmental conditions due to the reaction rate will be determined from calculation based on the reaction rate model. Results from these models will be able to predict the rate of ASR expansion and the cracking propagation that may arise.

Sand-bentonite mixtures are well recognized as buffer and sealing material in nuclear waste repository constructions. The behaviour of compacted sand-bentonite mixture needs to be well understood in order to guarantee the safety and the efficiency of the barrier construction. This paper presents numerical simulations of swelling test and coupled thermo-hydro-mechanical (THM) test on compacted sand-bentonite mixture in order to reveal the influence of the temperature and hydraulic gradients on the distribution of temperature, mechanical stress and water content in such materials. Sensitivity analysis is carried out to identify the parameters which influence the most the response of the numerical model. Results of back analysis of the model parameters are reported and critically assessed.

We present the way of calculation of displacement in the bent reinforced concrete bar elements where rearrangement of internal forces and plastic hinge occurred. The described solution is based on prof. Borcz’s mathematical model. It directly takes into consideration the effects connected with the occurrence of plastic hinge, such as for example a crack, by means of a differential equation of axis of the bent reinforced concrete beam. The EN Eurocode 2 makes it possible to consider the influence of plastic hinge on the values of the reinforced concrete structures. This influence can also be assumed using other analytical methods. However, the results obtained by the application of Eurocode 2 are higher from those received in testing. Just comparably big error level occurs when calculations are made by means of Borcz’s method, but in the latter case, the results depend on the assumptions made beforehand. This method makes it possible to apply the experimental results using parameters r1 i r0. When the experimental results are taken into account, one could observe the compatibility between the calculations and actual deflections of the structure.

The article presents analysis of stress distribution in the reinforced concrete support beam bracket which is a component of prefabricated reinforced concrete building. The building structure is spatial frame where dilatations were applied. The proper stiffness of its structure is provided by frames with stiff joints, monolithic lift shifts and staircases. The prefabricated slab floors are supported by beam shelves which are shaped as inverted letter ‘T’. Beams are supported by the column brackets. In order to lower the storey height and fulfill the architectural demands at the same time, the designer lowered the height of beam at the support zone. The analyzed case refers to the bracket zone where the slant crack. on the support beam bracket was observed. It could appear as a result of overcrossing of allowable tension stresses in reinforced concrete, in the bracket zone. It should be noted that the construction solution applied, i.e. concurrent support of the “undercut” beam on the column bracket causes local concentration of stresses in the undercut zone where the strongest transverse forces and tangent stresses occur concurrently. Some additional rectangular stresses being a result of placing the slab floors on the lower part of beam shelves sum up with those described above.

NONZONAL WAVELETS ON S^N
(2010)

In the present article we will construct wavelets on an arbitrary dimensional sphere S^n due the approach of approximate Identities. There are two equivalently approaches to wavelets. The group theoretical approach formulates a square integrability condition for a group acting via unitary, irreducible representation on the sphere. The connection to the group theoretical approach will be sketched. The concept of approximate identities uses the same constructions in the background, here we select an appropriate section of dilations and translations in the group acting on the sphere in two steps. At First we will formulate dilations in terms of approximate identities and than we call in translations on the sphere as rotations. This leads to the construction of an orthogonal polynomial system in L²(SO(n+1)). That approach is convenient to construct concrete wavelets, since the appropriate kernels can be constructed form the heat kernel leading to the approximate Identity of Gauss-Weierstra\ss. We will work out conditions to functions forming a family of wavelets, subsequently we formulate how we can construct zonal wavelets from a approximate Identity and the relation to admissibility of nonzonal wavelets. Eventually we will give an example of a nonzonal Wavelet on $S^n$, which we obtain from the approximate identity of Gauss-Weierstraß.

An energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS’s integral theorem. The total strain of each partition of the cross-section is split into load-dependent strain and pre-strain. Pre-strains have to be taken into account when the cross-section is pre-stressed, retrofit-ted or influenced by shrinkage, temperature etc. The unconstrained minimum problem can be solved for each load combination using standard software. The application of the method presented in the paper is demonstrated by means of examples.

In the paper presented, reinforced concrete shells of revolution are analyzed in both meridional and circumferential directions. Taking into account the physical non-linearity of the material, the internal forces and the deflections of the shell as well as the strain distribution at the cross-sections are calculated. The behavior of concrete under compression is described by linear and non-linear stress-strain relations. The description of the behavior of concrete under tension must account for tension stiffening effects. A tri-linear function is used to formulate the material law of reinforcement. The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical solution is formulated by means of the LAGRANGE Principle of the minimum of the total potential energy. The kinematically admissible field of deformation is defined by the displacements u in the meridional and w in the radial direction. These displacements must satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The strains are linearly distributed across the wall thickness. The strain energy depends on the specific of the material behavior. Using integral formulations of the material law [1], the strain energy of each part of the cross-section is defined as a function of the strains at the boundaries of the cross-sections. The shell is discretised in the meridional direction. Various methods of numerical differentiation and numerical integration are applied in order to determine the deformations and the strain energy. The unknown displacements u and w are calculated by a non-restricted extremum problem based on the minimum of the total potential energy. From mathematical point of view, the objective function is a convex function, thus the minimum can be determined without difficulty. The advantage of this formulation is that unlike non-linear methods with path-following algorithms the calculation does not have to account for changing stiffness and load increments. All iterations necessary to find the solution are integrated into the “Solver”. The model presented provides many ways of investigating the influence of various material parameters on the stresses and deformations of the entire shell structure.

Nodal integration of finite elements has been investigated recently. Compared with full integration it shows better convergence when applied to incompressible media, allows easier remeshing and highly reduces the number of material evaluation points thus improving efficiency. Furthermore, understanding it may help to create new integration schemes in meshless methods as well. The new integration technique requires a nodally averaged deformation gradient. For the tetrahedral element it is possible to formulate a nodal strain which passes the patch test. On the downside, it introduces non-physical low energy modes. Most of these "spurious modes" are local deformation maps of neighbouring elements. Present stabilization schemes rely on adding a stabilizing potential to the strain energy. The stabilization is discussed within this article. Its drawbacks are easily identified within numerical experiments: Nonlinear material laws are not well represented. Plastic strains may often be underestimated. Geometrically nonlinear stabilization greatly reduces computational efficiency. The article reinterpretes nodal integration in terms of imposing a nonconforming C0-continuous strain field on the structure. By doing so, the origins of the spurious modes are discussed and two methods are presented that solve this problem. First, a geometric constraint is formulated and solved using a mixed formulation of Hu-Washizu type. This assumption leads to a consistent representation of the strain energy while eliminating spurious modes. The solution is exact, but only of theoretical interest since it produces global support. Second, an integration scheme is presented that approximates the stabilization criterion. The latter leads to a highly efficient scheme. It can even be extended to other finite element types such as hexahedrals. Numerical efficiency, convergence behaviour and stability of the new method is validated using linear tetrahedral and hexahedral elements.

New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities.

A stress based remodeling approach is used to investigate the sensitivity of the collagen architecture in humane eye tissues on the biomechanical response of the lamina cribrosa with a particular focus on the stress environment of the nerve fibers. This approach is based on a multi-level biomechanical framework, where the biomechanical properties of eye tissues are derived from a single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous reorientation of collagen fibrils. To investigate the multi-scale phenomena related to glaucomatous neuropathy a generalized computational homogenization scheme is applied to a coupled two-scale analysis of the human eye considering a numerical macro- and meso-scale model of the lamina cribrosa.

For many applications, nonuniformly distributed functional data is given which lead to large–scale scattered data problems. We wish to represent the data in terms of a sparse representation with a minimal amount of degrees of freedom. For this, an adaptive scheme which operates in a coarse-to-fine fashion using a multiscale basis is proposed. Specifically, we investigate hierarchical bases using B-splines and spline-(pre)wavelets. At each stage a leastsquares approximation of the data is computed. We take into account different requests arising in large-scale scattered data fitting: we discuss the fast iterative solution of the least square systems, regularization of the data, and the treatment of outliers. A particular application concerns the approximate continuation of harmonic functions, an issue arising in geodesy.

MULTI-SITE CONSTRUCTION PROJECT SCHEDULING CONSIDERING RESOURCE MOVING TIME IN DEVELOPING COUNTRIES
(2010)

Under the booming construction demands in developing countries, particularly in Vietnam situation, construction contractors often perform multiple concurrent projects in different places. In construction project scheduling processes, the existing scheduling methods often assume the resource moving time between activities/projects to be negligible. When multiple projects are deployed in different places and far from each other, this assumption has many shortcomings for properly modelling the real-world constraints. Especially, with respect to developing countries such as the Vietnam which contains transportation systems that are still in backward and low technical standards. This paper proposes a new algorithm named Multi-Site Construction Project Scheduling - MCOPS. The objective of this algorithm is to solve the problem of minimising multi-site construction project duration under limited available conditions of renewable resources (labour, machines and equipment) combining with the moving time of required resource among activities/projects. Additionally, in order to mitigate the impact of resource moving time into the multi-site project duration, this paper proposed a new priority rule: Minimum Resource Moving Time (MinRMT). The MinRMT is applied to rank the finished activities according to a priority order, to support the released resources to the scheduling activities. In order to investigate the impact of the resource moving time among activities during the scheduling process, computational experimentation was implemented. The results of the MCOPS-based computational experiments showed that, the resource moving time among projects has significantly impacted the multi-site project durations and this amount of time can not be ignored in the multi-site project scheduling process. Besides, the efficient application of the MinRMT is also demonstrated through the achieved results of the computational experiment in this paper. Though the efforts in this paper are based on the Vietnamese construction conditions, the proposed method can be usefully applied in other developing countries which have similar construction conditions.

Planning and construction processes are characterized by the peculiarity that they need to be designed individually for each project. It is necessary to set up an individual schedule for each project. As a basis for a new project, schedules from already finished projects are used, but adaptions are always necessary. In practice, scheduling tools only document a process. Schedules cover a set of activities, their duration and a set of interdependencies between activities. The design of a process is up to the user. It is not necessary to specify each interdependency, and completeness and correctness need to be checked manually. No methodologies are available to guarantee properties such as correctness or completeness. The considerations presented in the paper are based on an approach where a planning and a construction process including the interdependencies between planning and construction activities are regarded as a result. Selected information need to be specified by a user, and a proposal for an order of planning and construction activities is computed. As a consequence, process properties such as correctness and completeness can be guaranteed with respect to user input. Especially in Germany, clients are allowed to modify their requirements at any time. This leads to modifications in the planning and construction processes. This paper covers a mathematical formulation for this problem based on set theory. A complex structure is set up covering objects and relations; and operations are defined that guarantee consistency in the underlying and versioned process description. The presented considerations are based on previous work. This paper can be regarded as the next step in a series of previous work describing how a suitable concept for handling, planning and construction processes in civil engineering can be formed.

Several results concerning the distribution of the headway of busses in the flow behind a traffic signal are presented. In the main focus of interest is the description of analytical models, which are verified by the results of Monte-Carlo-Methods. The advantage of analytical models (verified, but not derived by simulation methods) is their flexibility with respect to possible generalizations. For instance, several random distributions of the flow incoming to the traffic signal can be compared. The attention will be directed at the question, how the primary headway H (analyzed in front of the traffic signal) is mapped to the headway H’ analyzed behind of the traffic signal and how the random distribution of H is mapped to that of H’. For the traffic flow in front of the traffic signal several models will be discussed. The first case considers the situation, that busses operate on a common lane with the individual motor car traffic and the traffic flow is saturated. In the second situation, busses operate on a separated bus lane. Moreover, a mixed situation is discussed to model as close to reality as possible.

The application of partly decoupled approach by means of continuum mechanics facilitates the calculation of structural responses due to welding. The numerical results demonstrate the ability of a qualitative prediction of welded connections. As it is intended to integrate the local effects of a joint in structural analysis of steel constructions, it is necessary to meet higher approaches towards quality. The wide array of material parameters are presented, which are affecting the thermal, metallurgical and mechanical behavior, and which have to be identified. For that purpose further investigations are necessary to analyze the sensitivity of the models towards different material properties. The experimental determination of every material parameter is not possible due to the extraordinary laborious efforts needed. Besides that, experimentally identified parameters can be applied only for the tested steel quality for measured temperature-time regimes. For that reason alternative approaches for identification of material parameters, such as optimization strategies, have to be applied. After a definition of material parameters a quantitative prediction of welded connections will also be possible. Numerical results show the effect of phase transformation, activated by welding process, on residual stress state. As these phenomena occur in local areas in the range of crystal and grain sizes, the description of microscopic phenomena and their propagation on a macroscopic level due to approaches of homogenization might be expedient. Nevertheless, one should bear in mind, the increasing number of material parameters as well as the complexity of their experimental determination. Thus the microscopic approach should always be investigated under the scope of ability and efficiency of a required prediction. Under certain circumstances a step backwards, adopting a phenomenological approach, also can be beneficial.

There are many different approaches to simulate the mechanical behavior of RC−Frames with masonry infills. In this paper, selected modeling techniques for masonry infills and reinforced concrete frame members will be discussed − stressing the attention on the damaging effects of the individual members and the entire system under quasi−static horizontal loading. The effect of the infill walls on the surrounding frame members is studied using equivalent strut elements. The implemented model consider in−plane failure modes for the infills, such as bed joint sliding and corner crushing. These frame member models differ with respect to their stress state. Finally, examples are provided and compared with experimental data from a real size test executed on a three story RC−Frame with and without infills. The quality of the model is evaluated on the basis of load−displacement relationships as well as damage progression.

The evident advances of the computational power of the digital computers enable the modeling of the total system of structures. Such modeling demands compatible representations of the couplings of different structural subsystems. Therefore, models of dynamic interaction between the vehicle and the bridge and models of a bridge bearing, a coupling element between the bridge's superstructure and substructure, are of interest and discussed within this paper. The vehicle-bridge interaction may be described as a function connecting two sets of behavior. In this case, the coupling is embodied by mutual parameters that affect both systems, such as the frequency content of the bridge and the vehicle. Whereas the bridge bearings are elements used specifically to couple, in such elements the deformation and the transferred loads are used in characterizing the coupling The nature of these couplings and their influence on the bridge response is different. However, the need to assess the amount of dynamic response transferred by or within these couplings is a common argument.

Civil engineers take advantage of models to design reliable structures. In order to fulfill the design goal with a certain amount of confidence, the utilized models should be able to predict the probable structural behavior under the expected loading schemes. Therefore, a major challenge is to find models which provide less uncertain and more robust responses. The problem gets even twofold when the model to be studied is a global model comprised of different interacting partial models. This study aims at model quality evaluation of global models with a focus on frame-wall systems as the case study. The paper, presents the results of the first step taken toward accomplishing this goal. To start the model quality evaluation of the global frame-wall system, the main element (i.e. the wall) was studied through nonlinear static and dynamic analysis using two different modeling approaches. The two selected models included the fiber section model and the Multiple-Vertical-Line-Element-Model (MVLEM). The influence of the wall aspect ratio (H=L) and the axial load on the response of the models was studied. The results from nonlinear static and dynamic analysis of both models are presented and compared. The models resulted in quite different responses in the range of low aspect ratio walls under large axial loads due to different contribution of the shear deformations to the top displacement. In the studied cases, the results implied that careful attention should be paid to the model quality evaluation of the wall models specifically when they are supposed to be coupled to other partial models such as a moment frame or a soil-footing substructure which their response is sensitive to shear deformations. In this case, even a high quality wall model would not result in a high quality coupled system since it fails to interact properly with the rest of the system.

MODEL DESCRIBING STATIC AND DYNAMIC DISPLACEMENTS OF SILOS WALL DURING THE FLOW OF LOOSE MATERIAL
(2012)

Correct evaluation of wall displacements is a key matter when designing silos. This issue is important from both the standpoint of design engineer (load-bearing capacity of structures) and end-consumer (durability of structures). Commonplace methods of silo design mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to specify methods of dynamic displacements analysis. Measurements of stressacting on silo walls prove that the actual stress is sum of static and dynamic stresses. Janssen came up with differential equation describing state of static equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on silo walls can be determined. Equations of motion were determined from equilibrium equations of feature objects. General solution, describing dynamic stresses was presented as parametric model. This paper presents particular integrals of differential equation, which enable analysing displacements and vibrations for different rigidities of silo walls, types of granular solid and its flow rate.

Long-span cable supported bridges are prone to aerodynamic instabilities caused by wind and this phenomenon is usually a major design criterion. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary therefore requires accurate and robust models. This paper aims at studying various combinations of models to predict the flutter phenomenon.
Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the hybrid model. Models for aerodynamic forces employed are the analytical Theodorsen expressions for the motion-enduced aerodynamic forces of a flat plate and Scanlan derivatives as a Meta model. Further, Computational Fluid Dynamics (CFD) simulations using the Vortex Particle Method (VPM) were used to cover numerical models.
The structural representations were dimensionally reduced to two degree of freedom section models calibrated from global models as well as a fully three-dimensional Finite Element (FE) model. A two degree of freedom system was analysed analytically as well as numerically.
Generally, all models were able to predict the flutter phenomenon and relatively close agreement was found for the particular bridge. In conclusion, the model choice for a given practical analysis scenario will be discussed in the context of the analysis findings.

MICROPLANE MODEL WITH INITIAL AND DAMAGE-INDUCED ANISOTROPY APPLIED TO TEXTILE-REINFORCED CONCRETE
(2010)

The presented material model reproduces the anisotropic characteristics of textile reinforced concrete in a smeared manner. This includes both the initial anisotropy introduced by the textile reinforcement, as well as the anisotropic damage evolution reflecting fine patterns of crack bridges. The model is based on the microplane approach. The direction-dependent representation of the material structure into oriented microplanes provides a flexible way to introduce the initial anisotropy. The microplanes oriented in a yarn direction are associated with modified damage laws that reflect the tension-stiffening effect due to the multiple cracking of the matrix along the yarn.

We study the Weinstein equation u on the upper half space R3+. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending on the hyperbolic distance and x2. These results imply the explicit mean value properties. We also compute the fundamental solution. The main tools are the hyperbolic metric and its invariance properties.

In this paper the influence of changes in the mean wind velocity, the wind profile power-law coefficient, the drag coefficient of the terrain and the structural stiffness are investigated on different complex structural models. This paper gives a short introduction to wind profile models and to the approach by Davenport A. G. to compute the structural reaction of wind induced vibrations. Firstly with help of a simple example (a skyscraper) this approach is shown. Using this simple example gives the reader the possibility to study the variance differences when changing one of the above mentioned parameters on this very easy example and see the influence of different complex structural models on the result. Furthermore an approach for estimation of the needed discretization level is given. With the help of this knowledge the structural model design methodology can be base on deeper understanding of the different behavior of the single models.

An introduction is given to Clifford Analysis over pseudo-Euclidean space of arbitrary signature, called for short Ultrahyperbolic Clifford Analysis (UCA). UCA is regarded as a function theory of Clifford-valued functions, satisfying a first order partial differential equation involving a vector-valued differential operator, called a Dirac operator. The formulation of UCA presented here pays special attention to its geometrical setting. This permits to identify tensors which qualify as geometrically invariant Dirac operators and to take a position on the naturalness of contravariant and covariant versions of such a theory. In addition, a formal method is described to construct the general solution to the aforementioned equation in the context of covariant UCA.

From 7 till 9 July 2009, the 18th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering is going to take place at the Bauhaus University Weimar. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences to report on their results in research, development and practice and to discuss. The conference offers several topics. Plenary lectures and thematic sessions will take place under the chairmanship of the mentioned colleagues.
We invite architects, civil engineers, designers, computer scientists, engineers, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference.

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!