### Refine

#### Keywords

- Angewandte Informatik (2)
- Angewandte Mathematik (2)
- Building Information Modeling (2)
- Computerunterstütztes Verfahren (2)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (2)

#### Year of publication

- 2015 (2) (remove)

It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics.

The p-Laplace equation is a nonlinear generalization of the Laplace equation. This generalization is often used as a model problem for special types of nonlinearities. The p-Laplace equation can be seen as a bridge between very general nonlinear equations and the linear Laplace equation. The aim of this paper is to solve the p-Laplace equation for 2 < p < 3 and to find strong solutions. The idea is to apply a hypercomplex integral operator and spatial function theoretic methods to transform the p-Laplace equation into the p-Dirac equation. This equation will be solved iteratively by using a fixed point theorem.