### Refine

#### Document Type

- Article (13)
- Conference Proceeding (2)
- Doctoral Thesis (1)

#### Institute

#### Keywords

- Finite-Elemente-Methode (16) (remove)

#### Year of publication

- 2004 (16) (remove)

The primary objective of initial shape analysis of a cable stayed bridge is to calculate initial installation cable tension forces and to evaluate fabrication camber of main span and pylon providing the final longitudinal profile of the bridge at the end of construction. In addition, the initial cable forces depending on the alternation of the bridge’s shape can be obtained from the analysis, and will be used to provide construction safety during construction. In this research, we conducted numerical experiments for initial shape of Ko-ha bridge, which will be constructed in the near future, using three different typical methods such as continuous beam method, linear truss method, and IIMF (Introducing Initial Member Force) method

The displacements and stresses in arch dams and their abutments are frequently determined with 20-node brick elements. The elements are distorted near the contact plane between the wall and the abutment. A cantilever beam testbed has been developed to investigate the consequences of this distortion. It is shown that the deterioration of the accuracy in the computed stresses is significant. A compatible 18-node wedge element with linear stress variation is developed as an alternative to the brick element. The shape of this element type is readily adapted to the shape of the contact plane. It is shown that the accuracy of the computed stresses in the vicinity of the contact plane is improved significantly by the use of wedge elements.

Framed-tube system with multiple internal tubes is analysed using an orthotropic box beam analogy approach in which each tube is individually modelled by a box beam that accounts for the flexural and shear deformations, as well as the shear-lag effects. A simple numerical modeling technique is proposed for estimating the shear-lag phenomenon in tube structures with multiple internal tubes. The proposed method idealizes the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear-lag phenomenon of such structures is studied taking into account the additional bending moments in the tubes. A detailed work is carried out through the numerical analysis of the additional bending moment. The moment factor is further introduced to identify the shear lag phenomenon along with the additional moment.

This paper presents the combination of two different parallelization environments, OpenMP and MPI, in one numerical simulation tool. The computation of the system matrices and vectors is parallelized with OpenMP and the solution of the system of equations is done with the MPIbased solver MUMPS. The efficiency of both algorithms is shown on several linear and nonlinear examples using the Finite Element Method and a meshless discretization technique.

Creation of hierarchical sequence of the plastic and viscoplastic models according to different levels of structure approximations is considered. Developed strategy of multimodel analysis, which consists of creation of the inelastic models library, determination of selection criteria system and caring out of multivariant sequential clarifying computations, is described. Application of the multimodel approach in numerical computations has demonstrated possibility of reliable prediction of stress-strain response under wide variety of combined nonproportional loading.

The paper investigates accuracy of deflection predictions made by the finite element package ATENA and design code methods ACI and EC2. Deflections have been calculated for a large number of experimental reinforced concrete beams reported by three investigators. Statistical parameters have been established for each of the technique at different load levels, separately for the beams with small and moderate reinforcement ratio.

Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells
(2004)

In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques...

In this paper, systematic analyses for the shoring systems installed to support the applied loads during construction are performed on the basis of the numerical approach. On the basis of a rigorous time-dependent analysis, structural behaviors of reinforced concrete (RC) frame structures according to the changes in design variables such as the types of shoring systems, shore stiffness and shore spacing are analyzed and discussed. The time-dependent deformations of concrete such as creep and shrinkage and construction sequences of frame structures are also taken into account to minimize the structural instability and to reach to an improved design of shoring system because these effects may increase the axial forces delivered to the shores. In advance, the influence of the column shortening effect, generally mentioned in a tall building structure, is analyzed. From many parametric studies, it has been finally concluded that the most effective shoring system in RC frame structures is 2S1R (two shores and one reshore) regardless of the changes in design variables.

The method of the finite elements is an adaptable numerical procedure for interpolation as well as for the numerical approximation of solutions of partial differential equations. The basis of these procedure is the formulation of suitable finite elements and element decompositions of the solution space. Classical finite elements are based on triangles or quadrangles in the two-dimensional space and tetrahedron or hexahedron in the threedimensional space. The use of arbitrary-dimensional convex and non-convex polyhedrons as the geometrical basis of finite elements increases the flexibility of generating finite element decompositions substantially and is sometimes the only way to get a clear decomposition...

A large-scale computer modeling and simulation method is presented for environmental flows in urban area. Several GIS and CAD data were used for the preparation of shape model and an automatic mesh generation method based on Delaunay method was developed. Parallel finite element method based on domain decomposition method was employed for the numerical simulation of natural phenomena. The present method was applied to the simulation of flood flow and wind flow in urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments.