### Refine

#### Document Type

- Conference Proceeding (288)
- Article (3)

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (174)
- Graduiertenkolleg 1462 (31)
- Professur Informatik im Bauwesen (25)
- Institut für Strukturmechanik (22)
- Professur Angewandte Mathematik (18)
- Institut für Konstruktiven Ingenieurbau (8)
- Institut für Mathematik-Bauphysik (4)
- Professur Stahlbau (4)
- Juniorprofessur Stochastik und Optimierung (3)
- Professur Informatik in der Architektur (3)

#### Keywords

- Computerunterstütztes Verfahren (291) (remove)

The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference.
We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!

The theory of regular quaternionic functions of a reduced quaternionic variable is a 3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a reduced quaternionic variable. The analogues of the main theorems of complex analysis for the MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent series, approximation theorems and Cauchy type integral properties. The analogues of positive powers (inner spherical monogenics) are investigated: the set of recurrence formulas between the inner spherical monogenics and the explicit formulas are established. Some applications of the regular function in the elasticity theory and hydrodynamics are given.

In construction engineering, a schedule’s input data, which is usually not exactly known in the planning phase, is considered deterministic when generating the schedule. As a result, construction schedules become unreliable and deadlines are often not met. While the optimization of construction schedules with respect to costs and makespan has been a matter of research in the past decades, the optimization of the robustness of construction schedules has received little attention. In this paper, the effects of uncertainties inherent to the input data of construction schedules are discussed. Possibilities are investigated to improve the reliability of construction schedules by considering alternative processes for certain tasks and by identifying the combination of processes generating the most robust schedule with respect to the makespan of a construction project.

Performing parameter identification prior to numerical simulation is an essential task in geotechnical engineering. However, it has to be kept in mind that the accuracy of the obtained parameter is closely related to the chosen experimental setup, such as the number of sensors as well as their location. A well considered position of sensors can increase the quality of the measurement and to reduce the number of monitoring points. This Paper illustrates this concept by means of a loading device that is used to identify the stiffness and permeability of soft clays. With an initial setup of the measurement devices the pore water pressure and the vertical displacements are recorded and used to identify the afore mentioned parameters. Starting from these identified parameters, the optimal measurement setup is investigated with a method based on global sensitivity analysis. This method shows an optimal sensor location assuming three sensors for each measured quantity, and the results are discussed.

It is well-known that the solution of the fundamental equations of linear elasticity for a homogeneous isotropic material in plane stress and strain state cases can be equivalently reduced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat is used to describe the solution of the discrete biharmonic equation by the help of two discrete holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions we introduce a basis of discrete polynomials which fulfill the so-called Appell property with respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important in the field of fracture mechanics, where stress and displacement fields in the neighborhood of singularities caused by cracks and notches have to be calculated with high accuracy. Using the sum representation of holomorphic functions it seems possible to reproduce the order of singularity and to determine important mechanical characteristics.

One of the most promising and recent advances in computer-based planning is the transition from classical geometric modeling to building information modeling (BIM). Building information models support the representation, storage, and exchange of various information relevant to construction planning. This information can be used for describing, e.g., geometric/physical properties or costs of a building, for creating construction schedules, or for representing other characteristics of construction projects. Based on this information, plans and specifications as well as reports and presentations of a planned building can be created automatically. A fundamental principle of BIM is object parameterization, which allows specifying geometrical, numerical, algebraic and associative dependencies between objects contained in a building information model. In this paper, existing challenges of parametric modeling using the Industry Foundation Classes (IFC) as a federated model for integrated planning are shown, and open research questions are discussed.

Sensor faults can affect the dependability and the accuracy of structural health monitoring (SHM) systems. Recent studies demonstrate that artificial neural networks can be used to detect sensor faults. In this paper, decentralized artificial neural networks (ANNs) are applied for autonomous sensor fault detection. On each sensor node of a wireless SHM system, an ANN is implemented to measure and to process structural response data. Structural response data is predicted by each sensor node based on correlations between adjacent sensor nodes and on redundancies inherent in the SHM system. Evaluating the deviations (or residuals) between measured and predicted data, sensor faults are autonomously detected by the wireless sensor nodes in a fully decentralized manner. A prototype SHM system implemented in this study, which is capable of decentralized autonomous sensor fault detection, is validated in laboratory experiments through simulated sensor faults. Several topologies and modes of operation of the embedded ANNs are investigated with respect to the dependability and the accuracy of the fault detection approach. In conclusion, the prototype SHM system is able to accurately detect sensor faults, demonstrating that neural networks, processing decentralized structural response data, facilitate autonomous fault detection, thus increasing the dependability and the accuracy of structural health monitoring systems.

A topology optimization method has been developed for structures subjected to multiple load cases (Example of a bridge pier subjected to wind loads, traffic, superstructure...). We formulate the problem as a multi-criterial optimization problem, where the compliance is computed for each load case. Then, the Epsilon constraint method (method proposed by Chankong and Haimes, 1971) is adapted. The strategy of this method is based on the concept of minimizing the maximum compliance resulting from the critical load case while the other remaining compliances are considered in the constraints. In each iteration, the compliances of all load cases are computed and only the maximum one is minimized. The topology optimization process is switching from one load to another according to the variation of the resulting compliance. In this work we will motivate and explain the proposed methodology and provide some numerical examples.

SELECTION AND SCALING OF GROUND MOTION RECORDS FOR SEISMIC ANALYSIS USING AN OPTIMIZATION ALGORITHM
(2015)

The nonlinear time history analysis and seismic performance based methods require a set of scaled ground motions. The conventional procedure of ground motion selection is based on matching the motion properties, e.g. magnitude, amplitude, fault distance, and fault mechanism. The seismic target spectrum is only used in the scaling process following the random selection process. Therefore, the aim of the paper is to present a procedure to select a sets of ground motions from a built database of ground motions. The selection procedure is based on running an optimization problem using Dijkstra’s algorithm to match the selected set of ground motions to a target response spectrum. The selection and scaling procedure of optimized sets of ground motions is presented by examining the analyses of nonlinear single degree of freedom systems.

With the advances of the computer technology, structural optimization has become a prominent field in structural engineering. In this study an unconventional approach of structural optimization is presented which utilize the Energy method with Integral Material behaviour (EIM), based on the Lagrange’s principle of minimum potential energy. The equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured through minimization of the potential energy as an optimization problem. Imposing this problem as an additional constraint on a higher cost function of a structural property, a bilevel programming problem is formulated. The nested strategy of solution of the bilevel problem is used, treating the energy and the upper objective function as separate optimization problems. Utilizing the convexity of the potential energy, gradient based algorithms are employed for its minimization and the upper cost function is minimized using the gradient free algorithms, due to its unknown properties. Two practical examples are considered in order to prove the efficiency of the method. The first one presents a sizing problem of I steel section within encased composite cross section, utilizing the material nonlinearity. The second one is a discrete shape optimization of a steel truss bridge, which is compared to a previous study based on the Finite Element Method.