### Refine

#### Has Fulltext

- yes (67) (remove)

#### Document Type

- Conference Proceeding (24)
- Article (23)
- Doctoral Thesis (12)
- Master's Thesis (4)
- Bachelor Thesis (2)
- Diploma Thesis (2)

#### Institute

- Professur Informatik im Bauwesen (41)
- Institut für Strukturmechanik (13)
- Professur Stahlbau (4)
- Professur Baumechanik (3)
- Professur Baustatik und Bauteilfestigkeit (2)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (1)
- Graduiertenkolleg 1462 (1)
- Juniorprofessur Polymere Bindemittel und Baustoffe im Bauwesen (1)
- Professur Grundbau (1)

#### Keywords

- Finite-Elemente-Methode (67) (remove)

The displacements and stresses in arch dams and their abutments are frequently determined with 20-node brick elements. The elements are distorted near the contact plane between the wall and the abutment. A cantilever beam testbed has been developed to investigate the consequences of this distortion. It is shown that the deterioration of the accuracy in the computed stresses is significant. A compatible 18-node wedge element with linear stress variation is developed as an alternative to the brick element. The shape of this element type is readily adapted to the shape of the contact plane. It is shown that the accuracy of the computed stresses in the vicinity of the contact plane is improved significantly by the use of wedge elements.

This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.

For the analysis of arbitrary, by Finite Elements discretized shell structures, an efficient numerical simulation strategy with quadratic convergence including geometrically and physically nonlinear effects will be presented. In the beginning, a Finite-Rotation shell theory allowing constant shear deformations across the shell thickness is given in an isoparametric formulation. The assumed-strain concept enables the derivation of a locking-free finite element. The Layered Approach will be applied to ensure a sufficiently precise prediction of the propagation of plastic zones even throughout the shell thickness. The Riks-Wempner-Wessels global iteration scheme will be enhanced by a Line-Search procedure to ensure the tracing of nonlinear deformation paths with rather great load steps even in the post-peak range. The elastic-plastic material model includes isotropic hardening. A new Operator-Split return algorithm ensures considerably exact solution of the initial-value problem even for greater load steps. The combination with consistently linearized constitutive equations ensures quadratic convergence in a close neighbourhood to the exact solution. Finally, several examples will demonstrate accuracy and numerical efficiency of the developed algorithm.

A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales
(2003)

This paper introduces a method to generate adequate inclusion-matrix geometries of concrete in two and three dimensions, which are independent of any specific numerical discretization. The article starts with an analysis on shapes of natural aggregates and discusses corresponding mathematical realizations. As a first prototype a two-dimensional generation of a mesoscale model is introduced. Particle size distribution functions are analysed and prepared for simulating an adequate three-dimensional representation of the aggregates within a concrete structure. A sample geometry of a three-dimensional test cube is generated and the finite element analysis of its heterogeneous geometry by a uniform mesh is presented. Concluding, aspects of a multiscale analysis are discussed and possible enhancements are proposed.

Iso-parametric finite elements with linear shape functions show in general a too stiff element behavior, called locking. By the investigation of structural parts under bending loading the so-called shear locking appears, because these elements can not reproduce pure bending modes. Many studies dealt with the locking problem and a number of methods to avoid the undesirable effects have been developed. Two well known methods are the >Assumed Natural Strain< (ANS) method and the >Enhanced Assumed Strain< (EAS) method. In this study the EAS method is applied to a four-node plane element with four EAS-parameters. The paper will describe the well-known linear formulation, its extension to nonlinear materials and the modeling of material uncertainties with random fields. For nonlinear material behavior the EAS parameters can not be determined directly. Here the problem is solved by using an internal iteration at the element level, which is much more efficient and stable than the determination via a global iteration. To verify the deterministic element behavior the results of common test examples are presented for linear and nonlinear materials. The modeling of material uncertainties is done by point-discretized random fields. To show the applicability of the element for stochastic finite element calculations Latin Hypercube Sampling was applied to investigate the stochastic hardening behavior of a cantilever beam with nonlinear material. The enhanced linear element can be applied as an alternative to higher-order finite elements where more nodes are necessary. The presented element formulation can be used in a similar manner to improve stochastic linear solid elements.

The primary objective of initial shape analysis of a cable stayed bridge is to calculate initial installation cable tension forces and to evaluate fabrication camber of main span and pylon providing the final longitudinal profile of the bridge at the end of construction. In addition, the initial cable forces depending on the alternation of the bridge’s shape can be obtained from the analysis, and will be used to provide construction safety during construction. In this research, we conducted numerical experiments for initial shape of Ko-ha bridge, which will be constructed in the near future, using three different typical methods such as continuous beam method, linear truss method, and IIMF (Introducing Initial Member Force) method

Das FEM-Programmsystem „SYSWELD“ kommt für die Berechnung des Temperaturfeldes bei einer Laserstrahlschweißung zum Einsatz. Insbesondere sollen der Einfluss des Energieeintrages und die damit verbundene Gefügeumwandlung eines Feinkornbaustahles untersucht und Aussagen zur notwendigen Modellierungsgenauigkeit der Nahtgeometrie bzw. Netzverfeinerung getroffen werden. Im Einzelnen sind folgende Teilaufgaben zu lösen: - ausführliche Literaturrecherche zur numerischen Analyse von Schweißverbindungen insbesondere zu temperaturabhängigen Materialeigenschaften von Feinkornbaustählen, - Darstellung der Wärmequelle für das Laserstrahlschweißen, - Erprobung unterschiedlicher Netzvarianten für die FE-Analyse von instationären Temperaturfeldern, - Untersuchung zur Modellierungsgenauigkeit der Nahtgeometrie, - Parameterstudien zum Einfluss der Materialkennwerte und Gefügekinetik auf das Temperaturfeld sowie das Gefüge.