### Refine

#### Document Type

- Article (43)
- Conference Proceeding (10)
- Preprint (1)

#### Institute

- Institut für Strukturmechanik (44)
- Juniorprofessur Stochastik und Optimierung (43)
- Graduiertenkolleg 1462 (4)
- Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (2)
- Professur Angewandte Mathematik (2)
- Professur Informatik im Bauwesen (2)
- Professur Modellierung und Simulation - Konstruktion (1)

#### Keywords

- Angewandte Mathematik (50)
- Stochastik (41)
- Strukturmechanik (41)
- Angewandte Informatik (9)
- Computerunterstütztes Verfahren (9)
- Building Information Modeling (6)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (6)
- Sensitivitätsanalyse (2)
- Abtastung (1)
- Adaptive sampling method (1)
- Approximation (1)
- Architektur <Informatik> (1)
- Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve (1)
- Computational modeling (1)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (1)
- Dielectric materials (1)
- Finite element methods (1)
- Finite-Elemente-Methode (1)
- Fire resistance; Parameter optimization; Sensitivity analysis; Thermal properties (1)
- Frequency (1)
- Global sensitivity analysis (1)
- Impedance measurement (1)
- Least-squares support vector regression (1)
- Manufacturing (1)
- Partial differential equations (1)
- Piezoelectric materials (1)
- Resonance (1)
- Resonanz (1)
- Sampling (1)
- Stütze (1)
- Surrogate models (1)
- Thermodynamische Eigenschaft (1)
- Tragfähigkeit (1)
- Träger (1)

In the field of engineering, surrogate models are commonly used for approximating the behavior of a physical phenomenon in order to reduce the computational costs. Generally, a surrogate model is created based on a set of training data, where a typical method for the statistical design is the Latin hypercube sampling (LHS). Even though a space filling distribution of the training data is reached, the sampling process takes no information on the underlying behavior of the physical phenomenon into account and new data cannot be sampled in the same distribution if the approximation quality is not sufficient. Therefore, in this study we present a novel adaptive sampling method based on a specific surrogate model, the least-squares support vector regresson. The adaptive sampling method generates training data based on the uncertainty in local prognosis capabilities of the surrogate model - areas of higher uncertainty require more sample data. The approach offers a cost efficient calculation due to the properties of the least-squares support vector regression. The opportunities of the adaptive sampling method are proven in comparison with the LHS on different analytical examples. Furthermore, the adaptive sampling method is applied to the calculation of global sensitivity values according to Sobol, where it shows faster convergence than the LHS method. With the applications in this paper it is shown that the presented adaptive sampling method improves the estimation of global sensitivity values, hence reducing the overall computational costs visibly.

In order to minimize the probability of foundation failure resulting from cyclic action on structures, researchers have developed various constitutive models to simulate the foundation response and soil interaction as a result of these complex cyclic loads. The efficiency and effectiveness of these model is majorly influenced by the cyclic constitutive parameters. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model based identification of the cyclic constitutive parameters. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimization strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However for the back analysis (calibration) of the soil response to oscillatory load functions, this paper gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high quality solutions are obtained with minimum computational effort. Therefore model responses are produced which adequately describes what would otherwise be experienced in the laboratory or field.

The current study attempts to recognise an adequate classification for a semi-rigid beam-to-column connection by investigating strength, stiffness and ductility. For this purpose, an experimental test was carried out to investigate the moment-rotation (M-theta) features of flush end-plate (FEP) connections including variable parameters like size and number of bolts, thickness of end-plate, and finally, size of beams and columns. The initial elastic stiffness and ultimate moment capacity of connections were determined by an extensive analytical procedure from the proposed method prescribed by ANSI/AISC 360-10, and Eurocode 3 Part 1-8 specifications. The behaviour of beams with partially restrained or semi-rigid connections were also studied by incorporating classical analysis methods. The results confirmed that thickness of the column flange and end-plate substantially govern over the initial rotational stiffness of of flush end-plate connections. The results also clearly showed that EC3 provided a more reliable classification index for flush end-plate (FEP) connections. The findings from this study make significant contributions to the current literature as the actual response characteristics of such connections are non-linear. Therefore, such semirigid behaviour should be used to for an analysis and design method.