### Refine

#### Has Fulltext

- yes (7) (remove)

#### Document Type

- Conference Proceeding (3)
- Article (1)
- Bachelor Thesis (1)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Institute

#### Keywords

- Schwingung (7) (remove)

The development of the qualitative methods of investigation of dynamic systems, suggested by the authors, is the effective means for identification of dynamic systems. The results of the extensive investigations of the behaviour of linear dynamic systems and symmetrical system with double well potential under polyharmonic excitation are given in the paper. Phase space of dynamic systems is multi-dimensional. Each point of this space is characterized by not less than four co-ordinates. In particular: displacement, velocity, acceleration and time. Real space has three dimensions. It is more convenient for the analysis. We consider the phase space as limited to three dimensions, namely displacement, velocity and acceleration. Another choice of parameters of phase planes is also possible [1, 2]. Phase trajectory on a plane is of the greatest interest. It is known that accelerations of points are more sensitive to deviations of oscillations from harmonic ones. It is connected with the fact that power criteria on it are interpreted most evidently. Besides, dependence is back symmetric relative to axis of the diagram of elastic characteristic. Only the phase trajectories allow establishing a type and a level of non-linearity of a system. The results of the extensive investigations of the dynamic systems behaviour under polyharmonic excitation are given in the paper. The use of the given phase trajectories enables us to determine with a high degree of reliability the following peculiarities: - presence or absence of non-linear character of behaviour of a dynamic system; - type of non-linearity; - type of dynamic process (oscillations of the basic tone, combinative oscillations, chaotic oscillations.). Unlike existing asymptotic and stochastic methods of identification of dynamic systems, the use of the suggested technique is not connected with the use of a significant amount of computing procedures, and also it has a number of advantages at the investigation of complicated oscillations.

Zur Analyse des Glockenstuhles wird auf Grundlage der DIN 4178 die Belastung des Tragwerks infolge der dynamischen Beanspruchung durch das Glockenläuten ermittelt. Mit Hilfe des Programms SLang werden verschiedenen Modelle des Tragwerks erstellt, deren Belastung für verschiedenen Lastfälle untersucht wird. Die anschließenden Tragfähigkeits - und Schwingfestigkeitsuntersuchungen dienen der Beurteilung der Standsicherheiteit der Konstruktion. Besondere Aufmerksamkeit gilt hierbei der Kraftübertragung zwischen Glockenstuhl und Unterkonstruktion, die aufgrund fehlender fester Verbindungen nur über Reibkräfte gewährleistet ist.

Im Rahmen der Forschung an Bauteil- und Fügestellendämpfung wurden die Schwingungen der Bauteile bisher mit 1D-Laser-Vibrometern gemessen. Nun steht ein 3D-Laser-Scanner zur Verfügung. Diese Arbeit beschäftigt sich mit der Frage, ob mit dem 3D-Laser-Scanner bessere und weitere relevante Daten bei der Schwingungsmessung gewonnen werden können.

The vibration control of complicated mechanical structures is impossible without proper mathematical models that allow to have a true apprehension of events occurring in structural member before the starting of the experiment and correct the diagnostic experiment in case of need. An approach that implies using of a discrete model reflecting all required features of a prototype system and permitting of an effective analytical and numerical investigation is proposed in the work. At first a discrete model of a bladed disk with flaw is considered. Taking into account the symmetry of the structure by utilization of mathematical tools of group presentation theory the number of degrees of freedom of the system is diminished. Small damage of the disk is regarded as perturbation of structure symmetry. The distinction of vibration characteristics such as natural frequencies and mode shapes of damaged and undamaged systems is determined theoretically with the help of perturbation theory and can be used as an effective diagnostic criterion of a small-scale damage of the structure. In the second part of the work a non-linear two-mass model of an acoustic emission in a damaged structure is proposed. On basis of the numerical integration of the nonlinear differential equations and expansion of the derived solution into a Fourier series free and forced vibrations of the model are investigated. It is shown that proposed model reflects all characteristic properties of vibrations of damaged structures: reduction of natural frequency, sub- and super-resonances, acoustic effects.

The influence of vortex-induces vibrations on vertical tie rods has been proved as a determinant load factor in the lifetime-oriented dimensioning of arched steel bridges. Particularly, the welded connection plates between the suspenders and the arches often exhibit cracks induced primarily rods. In this context, the synchronization of the vortex-shedding to the rod motion in a critical wind velocity range, the so-called lock-in effect, is of essential interest.

A method of automatic maintenance of vibration amplitude of a number of mechanisms at given level, when exiting force amplitude is varied greatly is given. For this purpose a pendulum is attached to a mechanism through a viscoelastic hinge. Load of a pendulum can move along an arm and it is viscoelastic connected to it.

The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines.
Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria.
At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine.