### Refine

#### Has Fulltext

- yes (115) (remove)

#### Document Type

- Article (44)
- Doctoral Thesis (39)
- Conference Proceeding (23)
- Master's Thesis (5)
- Preprint (3)
- Habilitation (1)

#### Institute

- Institut für Strukturmechanik (115) (remove)

#### Keywords

- Computerunterstütztes Verfahren (22)
- Architektur <Informatik> (17)
- Maschinelles Lernen (17)
- Finite-Elemente-Methode (14)
- Machine learning (13)
- Angewandte Informatik (12)
- Angewandte Mathematik (12)
- CAD (10)
- Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (7)
- Erdbeben (7)
- machine learning (7)
- Optimierung (6)
- Wärmeleitfähigkeit (6)
- Deep learning (5)
- Building Information Modeling (4)
- Modellierung (4)
- big data (4)
- finite element method (4)
- rapid visual screening (4)
- Batterie (3)
- Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (3)
- Mehrskalenmodell (3)
- Neuronales Netz (3)
- Simulation (3)
- Strukturmechanik (3)
- earthquake (3)
- earthquake safety assessment (3)
- Abaqus (2)
- Artificial neural network (2)
- Beton (2)
- Biodiesel (2)
- Bridges (2)
- Dynamik (2)
- Fluid (2)
- Fracture mechanics (2)
- Intelligente Stadt (2)
- Internet of things (2)
- Isogeometric Analysis (2)
- Isogeometrische Analyse (2)
- Mechanische Eigenschaft (2)
- Mehrgitterverfahren (2)
- Mehrskalenanalyse (2)
- Modalanalyse (2)
- Multiscale modeling (2)
- NURBS (2)
- Nanostrukturiertes Material (2)
- Optimization (2)
- Polymere (2)
- Staumauer (2)
- Strukturdynamik (2)
- Unsicherheit (2)
- artificial intelligence (2)
- artificial neural networks (2)
- buildings (2)
- clustering (2)
- continuum mechanics (2)
- damaged buildings (2)
- data science (2)
- extreme learning machine (2)
- mathematical modeling (2)
- multiphase (2)
- optimization (2)
- random forest (2)
- reinforcement learning (2)
- smart cities (2)
- soft computing techniques (2)
- support vector machine (2)
- urban morphology (2)
- vulnerability assessment (2)
- wireless sensor networks (2)
- 2D/3D Adaptive Mesh Refinement (1)
- ANN modeling (1)
- Adaptives Verfahren (1)
- Aerodynamic Stability (1)
- Aerodynamic derivatives (1)
- Aerodynamik (1)
- Akkumulator (1)
- Algorithmus (1)
- Artificial Intelligence (1)
- Autogenous (1)
- Autonomous (1)
- B-Spline (1)
- B-Spline Finite Elemente (1)
- B-spline (1)
- Battery (1)
- Battery development (1)
- Bayes (1)
- Bayes neuronale Netze (1)
- Bayesian method (1)
- Bayesian neural networks (1)
- Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve (1)
- Berechnung (1)
- Beschleunigungsmessung (1)
- Beschädigung (1)
- Bildanalyse (1)
- Bodentemperatur (1)
- Bornitrid (1)
- Bridge (1)
- Bridge aerodynamics (1)
- Bruch (1)
- Bruchmechanik (1)
- Brücke (1)
- Brückenbau (1)
- Bubble column reactor (1)
- CFD (1)
- Carbon nanotubes (1)
- Chirurgie (1)
- Computersimulation (1)
- Concrete (1)
- ContikiMAC (1)
- Continuous-Time Markov Chain (1)
- Control system (1)
- Cost-Benefit Analysis (1)
- Damage (1)
- Damage identification (1)
- Damping (1)
- Dams (1)
- Data, information and knowledge modeling in civil engineering (1)
- Deal ii C++ code (1)
- Diskontinuumsmechanik (1)
- Diskrete-Elemente-Methode (1)
- Dissertation (1)
- Druckluft (1)
- ELM (1)
- Earthquake (1)
- Elastizität (1)
- Electrochemical properties (1)
- Elektrochemische Eigenschaft (1)
- Elektrode (1)
- Elektrodenmaterial (1)
- Energiespeichersystem (1)
- Energiespeicherung (1)
- Erdbebensicherheit (1)
- Erneuerbare Energien (1)
- FEM (1)
- Fehlerabschätzung (1)
- Fernerkung (1)
- Festkörpermechanik (1)
- Feststoff (1)
- Fiber Reinforced Composite (1)
- Finite Element Method (1)
- Finite Element Model (1)
- Flattern (1)
- Flexoelectricity (1)
- Fluid-Structure Interaction (1)
- Flutter (1)
- Fotovoltaik (1)
- Fracture (1)
- Full waveform inversion (1)
- Function theoretic methods and PDE in engineering sciences (1)
- Funktechnik (1)
- Fuzzy Logic (1)
- Fuzzy-Logik (1)
- Gaussian process regression (1)
- Geometric Modeling (1)
- Geometrie (1)
- Geometry Independent Field Approximation (1)
- Gesundheitsinformationssystem (1)
- Gesundheitswesen (1)
- Gewebeverbundwerkstoff (1)
- Goal-oriented A Posteriori Error Estimation (1)
- Graphen (1)
- Größenverhältnis (1)
- HPC (1)
- Healing (1)
- High-speed railway bridge (1)
- Hochbau (1)
- Homogenisieren (1)
- Homogenisierung (1)
- Homogenization (1)
- Hydrological drought (1)
- IOT (1)
- Ingenieurwissenschaften (1)
- Instandhaltung (1)
- Internet der Dinge (1)
- Internet der dinge (1)
- Internet of Things (1)
- Inverse analysis (1)
- Inverse problems (1)
- Isogeometrc Analysis (1)
- K-nearest neighbors (1)
- KNN (1)
- Kaverne (1)
- Keramik (1)
- Kirchoff--love theory (1)
- Klüftung (1)
- Kohlenstoff Nanoröhre (1)
- Konjugierte-Gradienten-Methode (1)
- Kontinuierliche Simul (1)
- Kontinuumsmechanik (1)
- Kosten-Nutzen-Analyse (1)
- Körper (1)
- Kühlkörper (1)
- Künstliche Intelligenz (1)
- Land surface temperature (1)
- Local maximum entropy approximants (1)
- Lufttemperatur (1)
- Lösungsverfahren (1)
- M5 model tree (1)
- MDLSM method (1)
- Machine Learning (1)
- Markov-Kette mit stetiger Zeit (1)
- Marmara Region (1)
- Maschinenbau (1)
- Mass Tuned Damper (1)
- Material (1)
- Materialversagen (1)
- Mathematical methods for (robotics and) computer vision (1)
- Mechanical properties (1)
- Mechanik (1)
- Membrane contactors (1)
- Mensch (1)
- Mesh Refinement (1)
- Meso-Scale (1)
- Messtechnik (1)
- Mikro-Scale (1)
- Model assessment (1)
- Modellbildung (1)
- Modellkalibrierung (1)
- Modezuordung (1)
- Molecular Liquids (1)
- Monte-Carlo-Integration (1)
- Monte-Carlo-Simulation (1)
- Morphologie (1)
- Motion-induced forces (1)
- Multi-criteria decision making (1)
- Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm (1)
- Multi-scale modeling (1)
- Nachhaltigkeit (1)
- Nanocomposite materials (1)
- Nanofluid (1)
- Nanomaterial (1)
- Nanomaterials (1)
- Nanomechanical Resonators (1)
- Nanomechanik (1)
- Nanoribbons, thermal conductivity (1)
- Nanostructures (1)
- Nanoverbundstruktur (1)
- Nasskühlung (1)
- Nichtlineare Finite-Elemente-Methode (1)
- Numerical modeling in engineering (1)
- Numerische Berechnung (1)
- Numerische Mathematik (1)
- Oberflächentemperatur (1)
- Operante Konditionierung (1)
- Operational modal analysis (1)
- Optimization in engineering applications (1)
- Optimization problems (1)
- PU Enrichment method (1)
- Parameteridentification (1)
- Passive damper (1)
- Phase field model (1)
- Phase-field model (1)
- Phase-field modeling (1)
- Physikalische Eigenschaft (1)
- Piezoelectricity (1)
- Polykristall (1)
- Polymer nanocomposites (1)
- Polymers (1)
- Polynomial Splines over Hierarchical T-meshes (1)
- Railway bridges (1)
- Rapid Visual Screening (1)
- Recovery Based Error Estimator (1)
- Referenzfläche (1)
- Rehabilitation (1)
- Reliability Analysis (1)
- Reliability Theory (1)
- Renewable energy (1)
- Resonator (1)
- Riss (1)
- Rissausbreitung (1)
- Schaden (1)
- Schadensdetektionsverfahren (1)
- Schadensmechanik (1)
- Schubspannung (1)
- Schwingung (1)
- Schwingungsanalyse (1)
- Schwingungsdämpfer (1)
- Schädigung (1)
- Schätztheorie (1)
- Selbstheilung (1)
- Semi-active damper (1)
- Sensitivity (1)
- Sensitivitätsanalyse (1)
- Sensor (1)
- Simulationsprozess (1)
- Solar (1)
- Stabilität (1)
- Stahlbau (1)
- Standsicherheit (1)
- Staudamm (1)
- Steifigkeit (1)
- Stochastic Subspace Identification (1)
- Stochastic analysis (1)
- Strukturoptimierung (1)
- Strömungsmechanik (1)
- Stütze (1)
- Super Healing (1)
- Surface effects (1)
- Sustainable production (1)
- System Identification (1)
- Systemidentifikation (1)
- Talsperre (1)
- Thermal Fluid-Structure Interaction (1)
- Thermal conductivity (1)
- Thermoelasticity (1)
- Thermoelastizität (1)
- Thin shell (1)
- Tragfähigkeit (1)
- Träger (1)
- Uncertainty (1)
- Uncertainty analysis (1)
- Verbundwerkstoff (1)
- Vernetzung (1)
- Vortex Induced Vibration (1)
- Vulnerability (1)
- Vulnerability assessment (1)
- Wasserbau (1)
- Wave propagation (1)
- Wechselwirkung (1)
- Werkstoff (1)
- Wind Energy (1)
- Wind Turbines (1)
- Windenergie (1)
- Windturbine (1)
- XFEM (1)
- Zementbeton (1)
- Zustandsraummodell (1)
- Zuverlässigkeitsanalyse (1)
- Zuverlässigkeitstheorie (1)
- action recognition (1)
- adaptive neuro-fuzzy inference system (ANFIS) (1)
- adaptive pushover (1)
- adaptive simulation (1)
- ant colony optimization algorithm (ACO) (1)
- artificial neural network (1)
- atomistic simulation methods (1)
- automatic modal analysis (1)
- back-pressure (1)
- biodiesel (1)
- buckling (1)
- building information modelling (1)
- ceramics (1)
- classification (1)
- classifier (1)
- clear channel assessments (1)
- cluster density (1)
- cluster shape (1)
- composite (1)
- computation (1)
- computational fluid dynamics (CFD) (1)
- concrete (1)
- congestion control (1)
- conjugate gradient method (1)
- continuum damage mechanics (1)
- coronary artery disease (1)
- crack (1)
- crack identification (1)
- cylindrical shell structures (1)
- damage (1)
- dams (1)
- diesel engines (1)
- dimensionality reduction (1)
- diskontinuum mechanics (1)
- dissimilarity measures (1)
- domain decomposition (1)
- duty-cycles (1)
- earthquake damage (1)
- earthquake vulnerability assessment (1)
- effective properties (1)
- energy consumption (1)
- energy efficiency (1)
- energy, exergy (1)
- ensemble model (1)
- estimation (1)
- extreme events (1)
- extreme pressure (1)
- finite element (1)
- firefly optimization algorithm (1)
- flow pattern (1)
- fog computing (1)
- food informatics (1)
- fuzzy decision making (1)
- genetic algorithm (1)
- grid-based (1)
- growth mode (1)
- health (1)
- health informatics (1)
- heart disease diagnosis (1)
- heat sink (1)
- heterogeneous material (1)
- high-performance computing (1)
- human blob (1)
- human body proportions (1)
- hybrid machine learning (1)
- hybrid machine learning model (1)
- hydraulic jump (1)
- hydrology (1)
- image processing (1)
- industry 4.0 (1)
- intergranular damage (1)
- isogeometric analysis (1)
- isogeometric methods (1)
- jointed rock (1)
- least square support vector machine (LSSVM) (1)
- level set method (1)
- longitudinal dispersion coefficient (1)
- material failure (1)
- matrix-free (1)
- mehrphasig (1)
- mitigation (1)
- modal analysis (1)
- modal parameter estimation (1)
- modal tracking (1)
- mode pairing (1)
- model updating (1)
- mortar method (1)
- multigrid (1)
- multigrid method (1)
- multiscale (1)
- multiscale method (1)
- nanocomposite (1)
- nanofluid (1)
- nanoreinforced composites (1)
- natural hazard (1)
- neural networks (NNs) (1)
- optimal sensor positions (1)
- optimale Sensorpositionierung (1)
- parameter identification (1)
- passive control (1)
- photovoltaic-thermal (PV/T) (1)
- physical activities (1)
- precipitation (1)
- prediction (1)
- predictive model (1)
- principal component analysis (1)
- public health (1)
- public space (1)
- quasicontinuum method (1)
- received signal strength indicator (RSSI) (1)
- recovery-based and residual-based error estimators (1)
- remote sensing (1)
- residential buildings (1)
- response surface methodology (1)
- rice (1)
- rivers (1)
- rule based classiﬁcation (1)
- scalable smeared crack analysis (1)
- scale transition (1)
- seasonal precipitation (1)
- seismic assessment (1)
- seismic control (1)
- seismic hazard analysis (1)
- seismic risk estimation (1)
- seismic vulnerability (1)
- signal processing (1)
- site-specific spectrum (1)
- smart sensors (1)
- soil temperature (1)
- solver (1)
- spatial analysis (1)
- spatiotemporal database (1)
- spearman correlation coefficient (1)
- standard deviation of pressure fluctuations (1)
- statistical coeffcient of the probability distribution (1)
- stilling basin (1)
- stochastic (1)
- stochastic subspace identification (1)
- structural control (1)
- structural dynamics (1)
- sugarcane (1)
- support vector regression (1)
- sustainability (1)
- tall buildings (1)
- thermal conductivity (1)
- tuned mass damper (1)
- tuned mass dampers (1)
- urban health (1)
- urban sustainability (1)
- water quality (1)
- wavelet transform (1)
- wireless sensor network (1)
- woven composites (1)

A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage
(2014)

Renewable energy resources such as wind and solar are intermittent, which causes instability when being connected to utility grid of electricity. Compressed air energy storage (CAES) provides an economic and technical viable solution to this problem by utilizing subsurface rock cavern to store the electricity generated by renewable energy in the form of compressed air. Though CAES has been used for over three decades, it is only restricted to salt rock or aquifers for air tightness reason. In this paper, the technical feasibility of utilizing hard rock for CAES is investigated by using a coupled thermo-hydro-mechanical (THM) modelling of nonisothermal gas flow. Governing equations are derived from the rules of energy balance, mass balance, and static equilibrium. Cyclic volumetric mass source and heat source models are applied to simulate the gas injection and production. Evaluation is carried out for intact rock and rock with discrete crack, respectively. In both cases, the heat and pressure losses using air mass control and supplementary air injection are compared.

This thesis concerns the physical and mechanical interactions on carbon nanotubes and polymers by multiscale modeling. CNTs have attracted considerable interests in view of their unique mechanical, electronic, thermal, optical and structural properties, which enable them to have many potential applications.
Carbon nanotube exists in several structure forms, from individual single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) to carbon nanotube bundles and networks. The mechanical properties of SWCNTs and MWCNTs have been extensively studied by continuum modeling and molecular dynamics (MD) simulations in the past decade since the properties could be important in the CNT-based devices. CNT bundles and networks feature outstanding mechanical performance and hierarchical structures and network topologies, which have been taken as a potential saving-energy material. In the synthesis of nanocomposites, the formation of the CNT bundles and networks is a challenge to remain in understanding how to measure and predict the properties of such large systems. Therefore, a mesoscale method such as a coarse-grained (CG) method should be developed to study the nanomechanical characterization of CNT bundles and networks formation.
In this thesis, the main contributions can be written as follows: (1) Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. (2) The CG potentials of SWCNTs are established by a molecular mechanics model. (3) The binding energy between two parallel and crossing SWCNTs and MWCNTs is obtained by continuum modeling of the van der Waals interaction between them. Crystalline and amorphous polymers are increasingly used in modern industry as tructural materials due to its important mechanical and physical properties. For crystalline polyethylene (PE), despite its importance and the studies of available MD simulations and continuum models, the link between molecular and continuum descriptions of its mechanical properties is still not well established. For amorphous polymers, the chain length and temperature effect on their
elastic and elastic-plastic properties has been reported based on the united-atom (UA) and CG MD imulations in our previous work. However, the effect of the CL and temperature on the failure behavior is not understood well yet. Especially, the failure behavior under shear has been scarcely reported in previous work. Therefore, understanding the molecular origins of macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge.
In this thesis, the main contributions can be written as follows: (1) An analytical molecular mechanics model is developed to obtain the size-dependent elastic properties of crystalline PE.
(2) We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials. (3) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers are scrutinized using molecular dynamics simulations. Finally, the influence of polymer wrapped two neighbouring SWNTs’ dispersion on their load transfer is investigated by molecular dynamics (MD) simulations, in which the SWNTs' position, the polymer chain length and the temperature on the interaction force is systematically studied.

Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications.

Identification of flaws in structures is a critical element in the management of maintenance and quality assurance processes in engineering. Nondestructive testing (NDT) techniques based on a wide range of physical principles have been developed and are used in common practice for structural health monitoring. However, basic NDT techniques are usually limited in their ability to provide the accurate information on locations, dimensions and shapes of flaws. One alternative to extract additional information from the results of NDT is to append it with a computational model that provides detailed analysis of the physical process involved and enables the accurate identification of the flaw parameters. The aim here is to develop the strategies to uniquely identify cracks in two-dimensional 2D) structures under dynamic loadings.
A local NDT technique combined eXtended Finite Element Method (XFEM) with dynamic loading in order to identify the cracks in the structures quickly and accurately is developed in this dissertation. The Newmark-b time integration method with Rayleigh damping is used for the time integration. We apply Nelder-Mead (NM)and Quasi-Newton (QN) methods for identifying the crack tip in plate. The inverse problem is solved iteratively, in which XFEM is used for solving the forward problem in each iteration. For a timeharmonic excitation with a single frequency and a short-duration signal measured along part of the external boundary, the crack is detected through the solution of an inverse time-dependent problem. Compared to the static load, we show that the dynamic loads are more effective for crack detection problems. Moreover, we tested different dynamic loads and find that NM method works more efficient under the harmonic load than the pounding load while the QN method achieves almost the same results for both load types.
A global strategy, Multilevel Coordinate Search (MCS) with XFEM (XFEM-MCS) methodology under the dynamic electric load, to detect multiple cracks in 2D piezoelectric plates is proposed in this dissertation. The Newmark-b method is employed for the time integration and in each iteration the forward problem is solved by XFEM for various cracks. The objective functional is minimized by using a global search algorithm MCS. The test problems show that the XFEM-MCS algorithm under the dynamic electric load can be effectively employed for multiple cracks detection in piezoelectric materials, and it proves to be robust in identifying defects in piezoelectric structures. Fiber-reinforced composites (FRCs) are extensively applied in practical engineering since they have high stiffness and strength. Experiments reveal a so-called interphase zone, i.e. the space between the outside interface of the fiber and the inside interface of the matrix. The interphase strength between the fiber and the matrix strongly affects the mechanical properties as a result of the large ratio of interface/volume. For the purpose of understanding the mechanical properties of FRCs with functionally graded interphase (FGI), a closed-form expression of the interface strength between a fiber and a matrix is obtained in this dissertation using a continuum modeling approach according to the ver derWaals (vdW) forces. Based on the interatomic potential, we develop a new modified nonlinear cohesive law, which is applied to study the interface delamination of FRCs with FGI under different loadings. The analytical solutions show that the delamination behavior strongly depends on the interphase thickness, the fiber radius, the Young’s moduli and Poisson’s ratios of the fiber and the matrix. Thermal conductivity is the property of a material to conduct heat. With the development and deep research of 2D materials, especially graphene and molybdenum disulfide (MoS2), the thermal conductivity of 2D materials attracts wide attentions. The thermal conductivity of graphene nanoribbons (GNRs) is found to appear a tendency of decreasing under tensile strain by classical molecular dynamics (MD) simulations. Hence, the strain effects of graphene can play a key role in the continuous tunability and applicability of its thermal conductivity property at nanoscale, and the dissipation of thermal conductivity is an obstacle for the applications of thermal management. Up to now, the thermal conductivity of graphene under shear deformation has not been investigated yet. From a practical point of view, good thermal managements of GNRs have significantly potential applications of future GNR-based thermal nanodevices, which can greatly improve performances of the nanosized devices due to heat dissipations. Meanwhile, graphene is a thin membrane structure, it is also important to understand the wrinkling behavior under shear deformation. MoS2 exists in the stable semiconducting 1H phase (1H-MoS2) while the metallic 1T phase (1T-MoS2) is unstable at ambient conditions. As it’s well known that much attention has been focused on studying the nonlinear optical properties of the 1H-MoS2. In a very recent research, the 1T-type monolayer crystals of TMDCs, MX2 (MoS2, WS2 ...) was reported having an intrinsic in-plane negative Poisson’s ratio. Luckily, nearly at the same time, unprecedented long-term (>3months) air stability of the 1T-MoS2 can be achieved by using the donor lithium hydride (LiH). Therefore, it’s very important to study the thermal conductivity of 1T-MoS2.
The thermal conductivity of graphene under shear strain is systematically studied in this dissertation by MD simulations. The results show that, in contrast to the dramatic decrease of thermal conductivity of graphene under uniaxial tensile, the thermal conductivity of graphene is not sensitive to the shear strain, and the thermal conductivity decreases only 12-16%. The wrinkle evolves when the shear strain is around 5%-10%, but the thermal conductivity barely changes.
The thermal conductivities of single-layer 1H-MoS2(1H-SLMoS2) and single-layer 1T-MoS2 (1T-SLMoS2) with different sample sizes, temperatures and strain rates have been studied systematically in this dissertation. We find that the thermal conductivities of 1H-SLMoS2 and 1T-SLMoS2 in both the armchair and the zigzag directions increase with the increasing of the sample length, while the increase of the width of the sample has minor effect on the thermal conductions of these two structures. The thermal conductivity of 1HSLMoS2 is smaller than that of 1T-SLMoS2 under size effect. Furthermore, the temperature effect results show that the thermal conductivities of both 1H-SLMoS2 and 1T-SLMoS2 decrease with the increasing of the temperature. The thermal conductivities of 1HSLMoS2 and 1T-SLMoS2 are nearly the same (difference <6%) in both of the chiral orientations under corresponding temperatures, especially in the armchair direction (difference <2.8%). Moreover, we find that the strain effects on the thermal conductivity of 1HSLMoS2 and 1T-SLMoS2 are different. More specifically, the thermal conductivity decreases with the increasing tensile strain rate for
1T-SLMoS2, while fluctuates with the growth of the strain for 1HSLMoS2. Finally, we find that the thermal conductivity of same sized 1H-SLMoS2 is similar with that of the strained 1H-SLMoS2 structure.

Renewable energy use is on the rise and these alternative resources of energy can help combat with the climate change. Around 80% of the world's electricity comes from coal and petroleum however, the renewables are the fastest growing source of energy in the world. Solar, wind, hydro, geothermal and biogas are the most common forms of renewable energy. Among them, wind energy is emerging as a reliable and large-scaled source of power production. The recent research and confidence in the performance has led to the construction of more and bigger wind turbines around the world. As wind turbines are getting bigger, a concern regarding their safety is also in discussion. Wind turbines are expensive machinery to construct and the enormous capital investment is one of the main reasons, why many countries are unable to adopt to the wind energy. Generally, a reliable wind turbine will result in better performance and assist in minimizing the cost of operation. If a wind turbine fails, it's a loss of investment and can be harmful for the surrounding habitat. This thesis aims towards estimating the reliability of an offshore wind turbine. A model of Jacket type offshore wind turbine is prepared by using finite element software package ABAQUS and is compared with the structural failure criteria of the wind turbine tower. UQLab, which is a general uncertainty quantification framework developed at ETH Zürich, is used for the reliability analysis. Several probabilistic methods are included in the framework of UQLab, which include Monte Carlo, First Order Reliability Analysis and Adaptive Kriging Monte Carlo simulation. This reliability study is performed only for the structural failure of the wind turbine but it can be extended to many other forms of failures e.g. reliability for power production, or reliability for different component failures etc. It's a useful tool that can be utilized to estimate the reliability of future wind turbines, that could result in more safer and better performance of wind turbines.

In recent years the demand on dynamic analyses of existing structures in civil engineering has remarkably increased. These analyses are mainly based on numerical models. Accordingly, the generated results depend on the quality of the used models. Therefore it is very important that the models describe the considered systems such that the behaviour of the physical structure is realistically represented. As any model is based on assumptions, there is always a certain degree of uncertainty present in the results of a simulation based on the respective numerical model. To minimise these uncertainties in the prediction of the response of a structure to a certain loading, it has become common practice to update or calibrate the parameters of a numerical model based on observations of the structural behaviour of the respective existing system.
The determination of the behaviour of an existing structure requires experimental investigations. If the numerical analyses concern the dynamic response of a structure it is sensible to direct the experimental investigations towards the identification of the dynamic structural behaviour which is determined by the modal parameters of the system. In consequence, several methods for the experimental identification of modal parameters have been developed since the 1980ies.
Due to various technical restraints in civil engineering which limit the possibilities to excitate a structure with economically reasonable effort, several methods have been developed that allow a modal identification form tests with an ambient excitation. The approach of identifying modal parameters only from measurements of the structural response without precise knowledge of the excitation is known as output-only or operational modal analysis.
Since operational modal analysis (OMA) can be considered as a link between numerical modelling and simulation on the one hand and the dynamic behaviour of an existing structure on the other hand, the respective algorithms connect both the concepts of structural dynamics and mathematical tools applied within the processing of experimental data. Accordingly, the related theoretical topics are revised after an introduction into the topic.
Several OMA methods have been developed over the last decades. The most established algorithms are presented here and their application is illustrated by means of both a small numerical and an experimental example. Since experimentally obtained results always underly manifold influences, an appropriate postprocessing of the results is necessary for a respective quality assessment. This quality assessment does not only require respective indicators but should also include the quantification of uncertainties.
One special feature in modal testing is that it is common to instrument the structure in different sensor setups to improve the spacial resolution of identified mode shapes. The modal information identified from tests in several setups needs to be merged a posteriori. Algorithms to cope with this problem are also presented.
Due to the fact that the amount of data generated in modal tests can become very large, manual processing can become extremely expensive or even impossible, for example in the case of a long-term continuous structural monitoring. In these situations an automated analysis and postprocessing are essential. Descriptions of respective methodologies are therefore also included in this work.
Every structural system in civil engineering is unique and so also every identification of modal parameters has its specific challenges. Some aspects that can be faced in practical applications of operational modal analysis are presented and discussed in a chapter that is dedicated specific problems that an analyst may have to overcome. Case studies of systems with very close modes, with limited accessibility as well as the application of different OMA methods are described and discussed. In this context the focus is put on several types of uncertainty that may occur in the multiple stages of an operational modal analysis. In literature only very specific uncertainties at certain stages of the analysis are addressed. Here, the topic of uncertainties has been considered in a broader sense and approaches for treating respective problems are suggested.
Eventually, it is concluded that the methodologies of operatinal modal analysis and related technical solutions have been well-engineered already. However, as in any discipline that includes experiments, a certain degree of uncertainty always remains in the results. From these conclusions has been derived a demand for further research and development that should be directed towards the minimisation of these uncertainties and to a respective optimisation of the steps and corresponding parameters included in an operational modal analysis.

Advances in nanotechnology lead to the development of nano-electro-mechanical systems (NEMS) such as nanomechanical resonators with ultra-high resonant frequencies. The ultra-high-frequency resonators have recently received significant attention for wide-ranging applications such as molecular separation, molecular transportation, ultra-high sensitive sensing, high-frequency signal processing, and biological imaging. It is well known that for micrometer length scale, first-principles technique, the most accurate approach, poses serious limitations for comparisons with experimental studies. For such larger size, classical molecular dynamics (MD) simulations are desirable, which require interatomic potentials. Additionally, a mesoscale method such as the coarse-grained (CG) method is another useful method to support simulations for even larger system sizes.
Furthermore, quasi-two-dimensional (Q2D) materials have attracted intensive research interest due to their many novel properties over the past decades. However, the energy dissipation mechanisms of nanomechanical resonators based on several Q2D materials are still unknown. In this work, the addressed main issues include the development of the CG models for molybdenum disulphide (MoS2), investigation of the mechanism effects on black phosphorus (BP) nanoresonators and the application of graphene nanoresonators. The primary coverage and results of the dissertation are as follows:
Method development. Firstly, a two-dimensional (2D) CG model for single layer MoS2 (SLMoS2) is analytically developed. The Stillinger-Weber (SW) potential for this 2D CG model is further parametrized, in which all SW geometrical parameters are determined analytically according to the equilibrium condition for each individual potential term, while the SW energy parameters are derived analytically based on the valence force field model. Next, the 2D CG model is further simplified to one-dimensional (1D) CG model, which describes the 2D SLMoS2 structure using a 1D chain model. This 1D CG model is applied to investigate the relaxed configuration and the resonant oscillation of the folded SLMoS2. Owning to the simplicity nature of the 1D CG model, the relaxed configuration of the folded SLMoS2 is determined analytically, and the resonant oscillation frequency is derived analytically. Considering the increasing interest in studying the properties of other 2D layered materials, and in particular those in the semiconducting transition metal dichalcogenide class like MoS2, the CG models proposed in current work provide valuable simulation approaches.
Mechanism understanding. Two energy dissipation mechanisms of BP nanoresonators are focused exclusively, i.e. mechanical strain effects and defect effects (including vacancy and oxidation). Vacancy defect is intrinsic damping factor for the quality (Q)-factor, while mechanical strain and oxidation are extrinsic damping factors. Intrinsic dissipation (induced by thermal vibrations) in BP resonators (BPRs) is firstly investigated. Specifically, classical MD simulations are performed to examine the temperature dependence for the Q-factor of the single layer BPR (SLBPR) along the armchair and zigzag directions, where two-step fitting procedure is used to extract the frequency and Q-factor from the kinetic energy time history. The Q-factors of BPRs are evaluated through comparison with those of graphene and MoS2 nanoresonators. Next, effects of mechanical strain, vacancy and oxidation on BP nanoresonators are investigated in turn. Considering the increasing interest in studying the properties of BP, and in particular the lack of theoretical study for the BPRs, the results in current work provide a useful reference.
Application. A novel application for graphene nanoresonators, using them to self-assemble small nanostructures such as water chains, is proposed. All of the underlying physics enabling this phenomenon is elucidated. In particular, by drawing inspiration from macroscale self-assembly using the higher order resonant modes of Chladni plates, classical MD simulations are used to investigate the self-assembly of water molecules using
graphene nanoresonators. An analytic formula for the critical resonant frequency based on the interaction between water molecules and graphene is provided. Furthermore, the properties of the water chains assembled by the graphene nanoresonators are studied.

This paper presents a novel numerical procedure based on the combination of an edge-based smoothed finite element (ES-FEM) with a phantom-node method for 2D linear elastic fracture mechanics. In the standard phantom-node method, the cracks are formulated by adding phantom nodes, and the cracked element is replaced by two new superimposed elements. This approach is quite simple to implement into existing explicit finite element programs. The shape functions associated with discontinuous elements are similar to those of the standard finite elements, which leads to certain simplification with implementing in the existing codes. The phantom-node method allows modeling discontinuities at an arbitrary location in the mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and the phantom-node method, we introduce an edge-based strain smoothing technique for the phantom-node method. Numerical results show that the proposed method achieves high accuracy compared with the extended finite element method (XFEM) and other reference solutions.

Nanostructured materials are extensively applied in many fields of material science for new industrial applications, particularly in the automotive, aerospace industry due to their exceptional physical and mechanical properties. Experimental testing of nanomaterials is expensive, timeconsuming,challenging and sometimes unfeasible. Therefore,computational simulations have been employed as alternative method to predict macroscopic material properties. The behavior of polymeric nanocomposites (PNCs) are highly complex.
The origins of macroscopic material properties reside in the properties and interactions taking place on finer scales. It is therefore essential to use multiscale modeling strategy to properly account for all large length and time scales associated with these material systems, which across many orders of magnitude. Numerous multiscale models of PNCs have been established, however, most of them connect only two scales. There are a few multiscale models for PNCs bridging four length scales (nano-, micro-, meso- and macro-scales). In addition, nanomaterials are stochastic in nature and the prediction of macroscopic mechanical properties are influenced by many factors such as fine-scale features. The predicted mechanical properties obtained by traditional approaches significantly deviate from the measured values in experiments due to neglecting uncertainty of material features. This discrepancy is indicated that the effective macroscopic properties of materials are highly sensitive to various sources of uncertainty, such as loading and boundary conditions and material characteristics, etc., while very few stochastic multiscale models for PNCs have been developed. Therefore, it is essential to construct PNC models within the framework of stochastic modeling and quantify the stochastic effect of the input parameters on the macroscopic mechanical properties of those materials.
This study aims to develop computational models at four length scales (nano-, micro-, meso- and macro-scales) and hierarchical upscaling approaches bridging length scales from nano- to macro-scales. A framework for uncertainty quantification (UQ) applied to predict the mechanical properties
of the PNCs in dependence of material features at different scales is studied. Sensitivity and uncertainty analysis are of great helps in quantifying the effect of input parameters, considering both main and interaction effects, on the mechanical properties of the PNCs. To achieve this major
goal, the following tasks are carried out:
At nano-scale, molecular dynamics (MD) were used to investigate deformation mechanism of glassy amorphous polyethylene (PE) in dependence of temperature and strain rate. Steered molecular dynamics (SMD)were also employed to investigate interfacial characteristic of the PNCs.
At mico-scale, we developed an atomistic-based continuum model represented by a representative volume element (RVE) in which the SWNT’s properties and the SWNT/polymer interphase are modeled at nano-scale, the surrounding polymer matrix is modeled by solid elements. Then, a two-parameter model was employed at meso-scale. A hierarchical multiscale approach has been developed to obtain the structure-property relations at one length scale and transfer the effect to the higher length
scales. In particular, we homogenized the RVE into an equivalent fiber.
The equivalent fiber was then employed in a micromechanical analysis (i.e. Mori-Tanaka model) to predict the effective macroscopic properties of the PNC. Furthermore, an averaging homogenization process was also used to obtain the effective stiffness of the PCN at meso-scale.
Stochastic modeling and uncertainty quantification consist of the following ingredients:
- Simple random sampling, Latin hypercube sampling, Sobol’ quasirandom sequences, Iman and Conover’s method (inducing correlation in Latin hypercube sampling) are employed to generate independent and dependent sample data, respectively.
- Surrogate models, such as polynomial regression, moving least squares (MLS), hybrid method combining polynomial regression and MLS, Kriging regression, and penalized spline regression, are employed as an approximation of a mechanical model. The advantage of the surrogate models is the high computational efficiency and robust as they can be constructed from a limited amount of available data.
- Global sensitivity analysis (SA) methods, such as variance-based methods for models with independent and dependent input parameters, Fourier-based techniques for performing variance-based methods and partial derivatives, elementary effects in the context of local SA, are used to quantify the effects of input parameters and their interactions on the mechanical properties of the PNCs. A bootstrap technique is used to assess the robustness of the global SA methods with respect to their performance.
In addition, the probability distribution of mechanical properties are determined by using the probability plot method. The upper and lower bounds of the predicted Young’s modulus according to 95 % prediction intervals were provided.
The above-mentioned methods study on the behaviour of intact materials. Novel numerical methods such as a node-based smoothed extended finite element method (NS-XFEM) and an edge-based smoothed phantom node method (ES-Phantom node) were developed for fracture problems. These methods can be used to account for crack at macro-scale for future works. The predicted mechanical properties were validated and verified. They show good agreement with previous experimental and simulations results.