• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browsen
  • Publish
  • FAQ

Refine

Has Fulltext

  • yes (124) (remove)

Document Type

  • Article (50)
  • Doctoral Thesis (41)
  • Conference Proceeding (23)
  • Master's Thesis (5)
  • Preprint (4)
  • Habilitation (1)

Author

  • Mosavi, Amir (24)
  • Shamshirband, Shahaboddin (19)
  • Nabipour, Narjes (14)
  • Rabczuk, Timon (14)
  • Könke, Carsten (13)
  • Lahmer, Tom (11)
  • Shokri, Manouchehr (8)
  • Harirchian, Ehsan (7)
  • Mosavi, Amirhosein (6)
  • Band, Shahab S. (5)
  • Häfner, Stefan (5)
  • Eckardt, Stefan (4)
  • Aram, Farshid (3)
  • Bucher, Christian (3)
  • Chau, Kwok-Wing (3)
  • Jadhav, Kirti (3)
  • Janizadeh, Saeid (3)
  • Most, Thomas (3)
  • Saadatfar, Hamid (3)
  • Samadianfard, Saeed (3)
  • Schrader, Kai (3)
  • Shamshirband, Shahab (3)
  • Unger, Jörg F. (3)
  • Zabel, Volkmar (3)
  • Zhuang, Xiaoying (3)
  • Abbas, Tajammal (2)
  • Ahmad, Sofyan (2)
  • Ahmadi, Mohammad Hossein (2)
  • Alizamir, Meysam (2)
  • Baghban, Alireza (2)
  • Brehm, Maik (2)
  • Chandra Pal, Subodh (2)
  • Chau, Kwok-wing (2)
  • Dehghani, Majid (2)
  • Faizollahzadeh Ardabili, Sina (2)
  • Felde, Imre (2)
  • GhasemiGol, Mohammad (2)
  • Hassannataj Joloudari, Javad (2)
  • Jiang, Jin-Wu (2)
  • Karimimoshaver, Mehrdad (2)
  • Kumar, Ravinder (2)
  • Kumari, Vandana (2)
  • Luther, Torsten (2)
  • Mohammad, Kifaytullah (2)
  • Mohammadzadeh, Ardashir (2)
  • Nabipur, Narjes (2)
  • Nadai, Laszlo (2)
  • Qasem, Sultan Noman (2)
  • Radmard Rahmani, Hamid (2)
  • Rasulzade, Shahla (2)
  • Sadeghzadeh, Milad (2)
  • Tan, Fengjie (2)
  • Zi, Goangseup (2)
  • Abbaspour-Gilandeh, Yousef (1)
  • Abeltshauser, Rainer (1)
  • Abu Bakar, Ilyani Akmar (1)
  • Aghakouchaki Hosseini, Seyed Ehsan (1)
  • Ahmadi, Mohammad H. (1)
  • Ahmed Khan Ghayyur, Shahbaz (1)
  • Alalade, Muyiwa (1)
  • Almasi, Ashkan (1)
  • Almomani, Thakir (1)
  • Amani, Jafar (1)
  • Amar, Menad Nait (1)
  • Amiri, Fatemeh (1)
  • Amirinasab, Mehdi (1)
  • Andersen, Pål Østebø (1)
  • Aydın, Mehmet Cihan (1)
  • Azadi Kakavand, M. R. (1)
  • Babanezhad, Meisam (1)
  • Banihani, Suleiman (1)
  • Ben Seghier, Mohamed El Amine (1)
  • Bocchiola, Daniele (1)
  • Budarapu, Pattabhi Ramaiah (1)
  • Buddhiraju, Sreekanth (1)
  • Büyüksaraç, Aydın (1)
  • Cerdà, Artemi (1)
  • Chakrabortty, Rabbin (1)
  • Chan, Chiu Ling (1)
  • Chen, Lei (1)
  • Chowdhuri, Indrajit (1)
  • Chronopoulos, Anthony Theodore (1)
  • Darvishi, Hossein Hassanpour (1)
  • Datcheva, Maria (1)
  • Deckner, T. (1)
  • Esmaeilbeiki, Fatemeh (1)
  • Faridmehr, Iman (1)
  • Faroughi, Maryam (1)
  • Fathi, Sadegh (1)
  • Ghamisi, Pedram (1)
  • Ghani, Anwar (1)
  • Ghasemi, Hamid (1)
  • Ghazvinei, Pezhman Taherei (1)
  • Ghazvini, Mahyar (1)
  • Ghorbani, Mohammad Ali (1)
  • Ghriga, Mohammed Abdelfetah (1)
  • Goswami, Somdatta (1)
  • Hajivaliei, Hatameh (1)
  • Hajnal, Eva (1)
  • Hamdia, Khader M. (1)
  • Hao, Xiao-Li (1)
  • Hassannataj Joloudari, Edris (1)
  • He, B. (1)
  • Herrmann, Annemarie (1)
  • Higuchi, Shoko (1)
  • Homaei, Mohammad Hossein (1)
  • Hossain, Md Naim (1)
  • Hossein Nezhad Shirazi, Ali (1)
  • Hosseini, Amir Hossein (1)
  • Huang, Runqiu (1)
  • Ilyani Akmar, A.B. (1)
  • Itam, Zarina (1)
  • Işık, Ercan (1)
  • Jaouadi, Zouhour (1)
  • Jia, Yue (1)
  • Jilte, Ravindra (1)
  • Joloudari, Javad Hassannataj (1)
  • Kalamkar, Vilas (1)
  • Kargar, Katayoun (1)
  • Kavrakov, Igor (1)
  • Kessel, Marco (1)
  • Keßler, Andrea (1)
  • Khadang, Amirhosein (1)
  • Khalesro, Shakila (1)
  • Khan, Imran (1)
  • Khosravi, Samiyeh (1)
  • Khosrobeigi Bozchaloei, Saeid (1)
  • Kmet, Tibor (1)
  • Kramer, O. (1)
  • Kumbhakar, Manotosh (1)
  • Lee, C.K. (1)
  • Levent Ekinci, Yunus (1)
  • Liang, Chao (1)
  • Liu, G.R. (1)
  • Macke, M. (1)
  • Maddah, Heydar (1)
  • Mai, Luu (1)
  • Mansor, Zulkefli (1)
  • Melesse, Assefa M. (1)
  • Meng, Yinghui (1)
  • Milani, Abbas S. (1)
  • Mohammadi Sheshkal, Faezeh (1)
  • Mohammadi-Khanaposhtani, Mohammad (1)
  • Mohebbi, Farzad (1)
  • Molaee, Amir (1)
  • Morgenthal, Guido (1)
  • Mortazavi, Bohayra (1)
  • Mousavi, Seyed Nasrollah (1)
  • Msekh, Mohammed Abdulrazzak (1)
  • Mukherjee, Kaustuv (1)
  • Najaf, Bahman (1)
  • Najafi, Bahman (1)
  • Nanthakumar, S.S. (1)
  • Nariman, Nazim (1)
  • Neyshabouri, Mohammadreza (1)
  • Nguyen-Thanh, Nhon (1)
  • Nguyen-Tuan, Long (1)
  • Nguyen-Xuan, Hung (1)
  • Nickerson, Seth (1)
  • Nikulla, Susanne (1)
  • Noman Qasem, Sultan (1)
  • Norouzi, Akbar (1)
  • Ouaer, Hocine (1)
  • Oucif, Chahmi (1)
  • Parsa, Javad (1)
  • Pereira, Luiz Felipe C. (1)
  • Pham, Hoang Anh (1)
  • Pinter, Gergo (1)
  • Rabizadeh, Ehsan (1)
  • Rafiee, Roham (1)
  • Raj Das, Rohan (1)
  • Razavi, Seyyed Mohammad (1)
  • Rezakazemi, Mashallah (1)
  • Ribeiro, D. (1)
  • Saboor Bagherzadeh, Amir (1)
  • Sabzi, Sajad (1)
  • Saha, Asish (1)
  • Saha, Sunil (1)
  • Sajadzadeh, Hassan (1)
  • Salavati, Mohammad (1)
  • Salehi, Somayeh (1)
  • Samaniego, Esteban (1)
  • Saqlai, Syed Muhammad (1)
  • Sattari, Mohammad Taghi (1)
  • Schanz, Tom (1)
  • Schemmann, Christoph (1)
  • Schwedler, Michael (1)
  • Shabani, Sevda (1)
  • Sheikh Khozani, Zohreh (1)
  • Shirazi, A. H. N. (1)
  • Shirazian, Saeed (1)
  • Siabi, Zhaleh (1)
  • Siddappa, Manju Gyaraganahalll (1)
  • Silani, Mohammad (1)
  • Soleimani, Faezeh (1)
  • Solgi, Ebrahim (1)
  • Steinke Júnior, Renato (1)
  • Stoimenova, Eugenia (1)
  • Tahir, Mamood Md. (1)
  • Talebi, Hossein (1)
  • Teixeira, Eder Daniel (1)
  • Theiler, Michael (1)
  • Tserpes, Konstantinos I. (1)
  • Udrea, Mihai-Andrei (1)
  • Varkonyi-Koczy, Annamaria R. (1)
  • Vogel, Frank (1)
  • Vollmering, Max (1)
  • Vu, Bac Nam (1)
  • Vu-Bac, N. (1)
  • Várkonyi-Kóczy, Annamária R. (1)
  • Wang, Cui-Xia (1)
  • Wang, Cuixia (1)
  • Wei, Ning (1)
  • Will, Johannes (1)
  • Winkel, Benjamin (1)
  • Yusof, Khamaruzaman bin Wan (1)
  • ZHANG, CHAO (1)
  • Zafar, Usman (1)
  • Zamen, Mohammad (1)
  • Zarehaghi, Davoud (1)
  • Zhang, Chao (1)
  • Zhao, Jun-Hua (1)
- less

Institute

  • Institut für Strukturmechanik (124) (remove)

Keywords

  • Computerunterstütztes Verfahren (22)
  • Maschinelles Lernen (19)
  • Architektur <Informatik> (17)
  • Finite-Elemente-Methode (14)
  • Machine learning (13)
  • Angewandte Informatik (12)
  • Angewandte Mathematik (12)
  • CAD (10)
  • machine learning (8)
  • Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (7)
  • Erdbeben (7)
  • Optimierung (6)
  • Wärmeleitfähigkeit (6)
  • Deep learning (5)
  • big data (5)
  • Building Information Modeling (4)
  • Modellierung (4)
  • Neuronales Netz (4)
  • finite element method (4)
  • rapid visual screening (4)
  • Batterie (3)
  • Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (3)
  • Isogeometric Analysis (3)
  • Mehrskalenmodell (3)
  • Simulation (3)
  • Strukturmechanik (3)
  • earthquake (3)
  • earthquake safety assessment (3)
  • random forest (3)
  • support vector machine (3)
  • Abaqus (2)
  • Artificial neural network (2)
  • Beton (2)
  • Biodiesel (2)
  • Bridges (2)
  • Dynamik (2)
  • FEM (2)
  • Fluid (2)
  • Fotovoltaik (2)
  • Fracture mechanics (2)
  • Fuzzy-Logik (2)
  • Intelligente Stadt (2)
  • Internet of things (2)
  • Isogeometrische Analyse (2)
  • Künstliche Intelligenz (2)
  • Mechanische Eigenschaft (2)
  • Mehrgitterverfahren (2)
  • Mehrskalenanalyse (2)
  • Modalanalyse (2)
  • Multiscale modeling (2)
  • NURBS (2)
  • Nanostrukturiertes Material (2)
  • Nichtlineare Finite-Elemente-Methode (2)
  • Optimization (2)
  • Polymere (2)
  • Staumauer (2)
  • Strukturdynamik (2)
  • Unsicherheit (2)
  • artificial intelligence (2)
  • artificial neural networks (2)
  • buildings (2)
  • clustering (2)
  • continuum mechanics (2)
  • damaged buildings (2)
  • data science (2)
  • extreme learning machine (2)
  • mathematical modeling (2)
  • multiphase (2)
  • optimization (2)
  • reinforcement learning (2)
  • smart cities (2)
  • soft computing techniques (2)
  • urban morphology (2)
  • vulnerability assessment (2)
  • wireless sensor networks (2)
  • 2D/3D Adaptive Mesh Refinement (1)
  • ANN modeling (1)
  • Adaptives Verfahren (1)
  • Aerodynamic Stability (1)
  • Aerodynamic derivatives (1)
  • Aerodynamik (1)
  • Akkumulator (1)
  • Algorithmus (1)
  • Artificial Intelligence (1)
  • Autogenous (1)
  • Autonomous (1)
  • B-Spline (1)
  • B-Spline Finite Elemente (1)
  • B-spline (1)
  • Battery (1)
  • Battery development (1)
  • Bayes (1)
  • Bayes neuronale Netze (1)
  • Bayes-Verfahren (1)
  • Bayesian method (1)
  • Bayesian neural networks (1)
  • Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve (1)
  • Berechnung (1)
  • Beschleunigungsmessung (1)
  • Beschädigung (1)
  • Bildanalyse (1)
  • Biomechanics (1)
  • Biomechanik (1)
  • Bodentemperatur (1)
  • Bornitrid (1)
  • Bridge (1)
  • Bridge aerodynamics (1)
  • Bruch (1)
  • Bruchmechanik (1)
  • Brustkorb (1)
  • Brücke (1)
  • Brückenbau (1)
  • Bubble column reactor (1)
  • CFD (1)
  • Carbon nanotubes (1)
  • Chirurgie (1)
  • Computersimulation (1)
  • Concrete (1)
  • ContikiMAC (1)
  • Continuous-Time Markov Chain (1)
  • Control system (1)
  • Cost-Benefit Analysis (1)
  • Damage (1)
  • Damage identification (1)
  • Damping (1)
  • Dams (1)
  • Data, information and knowledge modeling in civil engineering (1)
  • Deal ii C++ code (1)
  • Diskontinuumsmechanik (1)
  • Diskrete-Elemente-Methode (1)
  • Dissertation (1)
  • Druckluft (1)
  • ELM (1)
  • Earthquake (1)
  • Elastizität (1)
  • Electrochemical properties (1)
  • Elektrochemische Eigenschaft (1)
  • Elektrode (1)
  • Elektrodenmaterial (1)
  • Energieeffizienz (1)
  • Energiespeichersystem (1)
  • Energiespeicherung (1)
  • Entropie (1)
  • Erdbebensicherheit (1)
  • Erneuerbare Energien (1)
  • Fehlerabschätzung (1)
  • Fernerkung (1)
  • Festkörpermechanik (1)
  • Feststoff (1)
  • Fiber Reinforced Composite (1)
  • Finite Element Method (1)
  • Finite Element Model (1)
  • Flattern (1)
  • Flexoelectricity (1)
  • Fluid-Structure Interaction (1)
  • Flutter (1)
  • Fracture (1)
  • Full waveform inversion (1)
  • Function theoretic methods and PDE in engineering sciences (1)
  • Funktechnik (1)
  • Fuzzy Logic (1)
  • Fuzzy-Regelung (1)
  • Gaussian process regression (1)
  • Gebäude (1)
  • Geoinformatik (1)
  • Geometric Modeling (1)
  • Geometrie (1)
  • Geometry Independent Field Approximation (1)
  • Geschwindigkeit (1)
  • Gesundheitsinformationssystem (1)
  • Gesundheitswesen (1)
  • Gewebeverbundwerkstoff (1)
  • Goal-oriented A Posteriori Error Estimation (1)
  • Graphen (1)
  • Grundwasser (1)
  • Größenverhältnis (1)
  • HPC (1)
  • Healing (1)
  • High-speed railway bridge (1)
  • Hochbau (1)
  • Homogenisieren (1)
  • Homogenisierung (1)
  • Homogenization (1)
  • Hydrological drought (1)
  • IOT (1)
  • Incompressibility (1)
  • Infrastructures (1)
  • Ingenieurwissenschaften (1)
  • Instandhaltung (1)
  • Internet der Dinge (1)
  • Internet der dinge (1)
  • Internet of Things (1)
  • Inverse analysis (1)
  • Inverse problems (1)
  • Isogeometrc Analysis (1)
  • K-nearest neighbors (1)
  • KNN (1)
  • Kaverne (1)
  • Keramik (1)
  • Kirchoff--love theory (1)
  • Klüftung (1)
  • Kohlenstoff Nanoröhre (1)
  • Konjugierte-Gradienten-Methode (1)
  • Kontinuierliche Simul (1)
  • Kontinuumsmechanik (1)
  • Kosten-Nutzen-Analyse (1)
  • Körper (1)
  • Kühlkörper (1)
  • Land surface temperature (1)
  • Local maximum entropy approximants (1)
  • Lufttemperatur (1)
  • Lösungsverfahren (1)
  • M5 model tree (1)
  • MDLSM method (1)
  • Machine Learning (1)
  • Markov-Kette mit stetiger Zeit (1)
  • Marmara Region (1)
  • Maschinenbau (1)
  • Mass Tuned Damper (1)
  • Material (1)
  • Materialversagen (1)
  • Mathematical methods for (robotics and) computer vision (1)
  • Mechanical properties (1)
  • Mechanik (1)
  • Membrane contactors (1)
  • Mensch (1)
  • Mesh Refinement (1)
  • Meso-Scale (1)
  • Messtechnik (1)
  • Mikro-Scale (1)
  • Model assessment (1)
  • Modellbildung (1)
  • Modellkalibrierung (1)
  • Modezuordung (1)
  • Molecular Liquids (1)
  • Monte-Carlo-Integration (1)
  • Monte-Carlo-Simulation (1)
  • Morphologie (1)
  • Motion-induced forces (1)
  • Multi-criteria decision making (1)
  • Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm (1)
  • Multi-scale modeling (1)
  • Muscle model (1)
  • Muskel (1)
  • Nachhaltigkeit (1)
  • Nanocomposite materials (1)
  • Nanofluid (1)
  • Nanomaterial (1)
  • Nanomaterials (1)
  • Nanomechanical Resonators (1)
  • Nanomechanik (1)
  • Nanoribbons, thermal conductivity (1)
  • Nanostructures (1)
  • Nanoverbundstruktur (1)
  • Nasskühlung (1)
  • Naturkatastrophe (1)
  • Nitratbelastung (1)
  • Numerical modeling in engineering (1)
  • Numerische Berechnung (1)
  • Numerische Mathematik (1)
  • Oberflächentemperatur (1)
  • Operante Konditionierung (1)
  • Operational modal analysis (1)
  • Optimization in engineering applications (1)
  • Optimization problems (1)
  • PU Enrichment method (1)
  • Parameteridentification (1)
  • Passive damper (1)
  • Phase field model (1)
  • Phase-field model (1)
  • Phase-field modeling (1)
  • Phasenfeldmodell (1)
  • Physics informed neural network (1)
  • Physikalische Eigenschaft (1)
  • Piezoelectricity (1)
  • Polykristall (1)
  • Polymer nanocomposites (1)
  • Polymers (1)
  • Polynomial Splines over Hierarchical T-meshes (1)
  • Railway bridges (1)
  • Rapid Visual Screening (1)
  • Recovery Based Error Estimator (1)
  • Referenzfläche (1)
  • Rehabilitation (1)
  • Reliability Analysis (1)
  • Reliability Theory (1)
  • Renewable energy (1)
  • Resonator (1)
  • Riss (1)
  • Rissausbreitung (1)
  • Schaden (1)
  • Schadensdetektionsverfahren (1)
  • Schadensmechanik (1)
  • Schubspannung (1)
  • Schwingung (1)
  • Schwingungsanalyse (1)
  • Schwingungsdämpfer (1)
  • Schädigung (1)
  • Schätztheorie (1)
  • Selbstheilung (1)
  • Semi-active damper (1)
  • Sensitivity (1)
  • Sensitivitätsanalyse (1)
  • Sensor (1)
  • Simulationsprozess (1)
  • Solar (1)
  • Sprödbruch (1)
  • Stabilität (1)
  • Stahlbau (1)
  • Standsicherheit (1)
  • Staudamm (1)
  • Steifigkeit (1)
  • Stochastic Subspace Identification (1)
  • Stochastic analysis (1)
  • Strukturoptimierung (1)
  • Strömungsmechanik (1)
  • Stütze (1)
  • Super Healing (1)
  • Surface effects (1)
  • Sustainability (1)
  • Sustainable production (1)
  • System Identification (1)
  • Systemidentifikation (1)
  • Talsperre (1)
  • Thermal Fluid-Structure Interaction (1)
  • Thermal conductivity (1)
  • Thermoelasticity (1)
  • Thermoelastizität (1)
  • Thin shell (1)
  • Thorax (1)
  • Tragfähigkeit (1)
  • Träger (1)
  • Uncertainty (1)
  • Uncertainty analysis (1)
  • Verbundwerkstoff (1)
  • Vernetzung (1)
  • Vortex Induced Vibration (1)
  • Vulnerability (1)
  • Vulnerability assessment (1)
  • Wasserbau (1)
  • Wave propagation (1)
  • Wechselwirkung (1)
  • Werkstoff (1)
  • Wind Energy (1)
  • Wind Turbines (1)
  • Windenergie (1)
  • Windturbine (1)
  • XFEM (1)
  • Zementbeton (1)
  • Zustandsraummodell (1)
  • Zuverlässigkeitsanalyse (1)
  • Zuverlässigkeitstheorie (1)
  • action recognition (1)
  • adaptive neuro-fuzzy inference system (ANFIS) (1)
  • adaptive pushover (1)
  • adaptive simulation (1)
  • ant colony optimization algorithm (ACO) (1)
  • artificial neural network (1)
  • atomistic simulation methods (1)
  • automatic modal analysis (1)
  • back-pressure (1)
  • battery (1)
  • biodiesel (1)
  • brittle fracture (1)
  • buckling (1)
  • building information modelling (1)
  • ceramics (1)
  • classification (1)
  • classifier (1)
  • clear channel assessments (1)
  • cluster density (1)
  • cluster shape (1)
  • composite (1)
  • computation (1)
  • computational fluid dynamics (CFD) (1)
  • concrete (1)
  • congestion control (1)
  • conjugate gradient method (1)
  • continuum damage mechanics (1)
  • coronary artery disease (1)
  • crack (1)
  • crack identification (1)
  • cylindrical shell structures (1)
  • damage (1)
  • dams (1)
  • deep learning neural network (1)
  • deep neural network (1)
  • diesel engines (1)
  • dimensionality reduction (1)
  • diskontinuum mechanics (1)
  • dissimilarity measures (1)
  • domain decomposition (1)
  • duty-cycles (1)
  • earthquake damage (1)
  • earthquake vulnerability assessment (1)
  • effective properties (1)
  • energy consumption (1)
  • energy efficiency (1)
  • energy, exergy (1)
  • ensemble model (1)
  • estimation (1)
  • extreme events (1)
  • extreme pressure (1)
  • finite element (1)
  • firefly optimization algorithm (1)
  • flow pattern (1)
  • fog computing (1)
  • food informatics (1)
  • fractional-order control (1)
  • fuzzy decision making (1)
  • genetic algorithm (1)
  • geoinformatics (1)
  • grid-based (1)
  • ground water contamination (1)
  • growth mode (1)
  • gully erosion susceptibility (1)
  • health (1)
  • health informatics (1)
  • heart disease diagnosis (1)
  • heat sink (1)
  • heterogeneous material (1)
  • high-performance computing (1)
  • human blob (1)
  • human body proportions (1)
  • hybrid machine learning (1)
  • hybrid machine learning model (1)
  • hydraulic jump (1)
  • hydrological model (1)
  • hydrology (1)
  • image processing (1)
  • industry 4.0 (1)
  • intergranular damage (1)
  • isogeometric analysis (1)
  • isogeometric methods (1)
  • jointed rock (1)
  • least square support vector machine (LSSVM) (1)
  • level set method (1)
  • longitudinal dispersion coefficient (1)
  • material failure (1)
  • matrix-free (1)
  • mehrphasig (1)
  • mitigation (1)
  • modal analysis (1)
  • modal parameter estimation (1)
  • modal tracking (1)
  • mode pairing (1)
  • model updating (1)
  • mortar method (1)
  • multigrid (1)
  • multigrid method (1)
  • multiscale (1)
  • multiscale method (1)
  • nanocomposite (1)
  • nanofluid (1)
  • nanoreinforced composites (1)
  • natural hazard (1)
  • neural networks (NNs) (1)
  • optimal sensor positions (1)
  • optimale Sensorpositionierung (1)
  • parameter identification (1)
  • partical swarm optimization (1)
  • passive control (1)
  • phase field (1)
  • photovoltaic (1)
  • photovoltaic-thermal (PV/T) (1)
  • physical activities (1)
  • precipitation (1)
  • prediction (1)
  • predictive model (1)
  • principal component analysis (1)
  • public health (1)
  • public space (1)
  • quasicontinuum method (1)
  • received signal strength indicator (RSSI) (1)
  • recovery-based and residual-based error estimators (1)
  • remote sensing (1)
  • residential buildings (1)
  • response surface methodology (1)
  • rice (1)
  • rivers (1)
  • rule based classification (1)
  • scalable smeared crack analysis (1)
  • scale transition (1)
  • seasonal precipitation (1)
  • seismic assessment (1)
  • seismic control (1)
  • seismic hazard analysis (1)
  • seismic risk estimation (1)
  • seismic vulnerability (1)
  • signal processing (1)
  • site-specific spectrum (1)
  • smart sensors (1)
  • soil temperature (1)
  • solver (1)
  • spatial analysis (1)
  • spatiotemporal database (1)
  • spearman correlation coefficient (1)
  • square root cubature calman filter (1)
  • standard deviation of pressure fluctuations (1)
  • statistical analysis (1)
  • statistical coeffcient of the probability distribution (1)
  • stilling basin (1)
  • stochastic (1)
  • stochastic subspace identification (1)
  • structural control (1)
  • structural dynamics (1)
  • sugarcane (1)
  • support vector regression (1)
  • sustainability (1)
  • tall buildings (1)
  • thermal conductivity (1)
  • tuned mass damper (1)
  • tuned mass dampers (1)
  • type-3 fuzzy systems (1)
  • urban health (1)
  • urban sustainability (1)
  • water quality (1)
  • wavelet transform (1)
  • wireless sensor network (1)
  • woven composites (1)
- less

Year of publication

  • 2020 (42)
  • 2019 (12)
  • 2006 (11)
  • 2015 (10)
  • 2010 (8)
  • 2016 (7)
  • 2018 (7)
  • 2013 (5)
  • 2014 (5)
  • 2017 (5)
+ more

124 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar (2015)
The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference!
Assessment of Numerical Prediction Models for Aeroelastic Instabilities of Bridges (2016)
Abbas, Tajammal
The phenomenon of aerodynamic instability caused by the wind is usually a major design criterion for long-span cable-supported bridges. If the wind speed exceeds the critical flutter speed of the bridge, this constitutes an Ultimate Limit State. The prediction of the flutter boundary, therefore, requires accurate and robust models. The complexity and uncertainty of models for such engineering problems demand strategies for model assessment. This study is an attempt to use the concepts of sensitivity and uncertainty analyses to assess the aeroelastic instability prediction models for long-span bridges. The state-of-the-art theory concerning the determination of the flutter stability limit is presented. Since flutter is a coupling of aerodynamic forcing with a structural dynamics problem, different types and classes of structural and aerodynamic models can be combined to study the interaction. Here, both numerical approaches and analytical models are utilised and coupled in different ways to assess the prediction quality of the coupled model.
Prediction of aeroelastic response of bridge decks using artificial neural networks (2020)
Abbas, Tajammal ; Kavrakov, Igor ; Morgenthal, Guido ; Lahmer, Tom
The assessment of wind-induced vibrations is considered vital for the design of long-span bridges. The aim of this research is to develop a methodological framework for robust and efficient prediction strategies for complex aerodynamic phenomena using hybrid models that employ numerical analyses as well as meta-models. Here, an approach to predict motion-induced aerodynamic forces is developed using artificial neural network (ANN). The ANN is implemented in the classical formulation and trained with a comprehensive dataset which is obtained from computational fluid dynamics forced vibration simulations. The input to the ANN is the response time histories of a bridge section, whereas the output is the motion-induced forces. The developed ANN has been tested for training and test data of different cross section geometries which provide promising predictions. The prediction is also performed for an ambient response input with multiple frequencies. Moreover, the trained ANN for aerodynamic forcing is coupled with the structural model to perform fully-coupled fluid--structure interaction analysis to determine the aeroelastic instability limit. The sensitivity of the ANN parameters to the model prediction quality and the efficiency has also been highlighted. The proposed methodology has wide application in the analysis and design of long-span bridges.
A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars (2020)
Abbaspour-Gilandeh, Yousef ; Molaee, Amir ; Sabzi, Sajad ; Nabipur, Narjes ; Shamshirband, Shahaboddin ; Mosavi, Amir
Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2%, 87.7%, and 83.1%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.
Identification and separation of physical effects of coupled systems by using defined model abstractions (2017)
Abeltshauser, Rainer
The thesis investigates at the computer aided simulation process for operational vibration analysis of complex coupled systems. As part of the internal methods project “Absolute Values” of the BMW Group, the thesis deals with the analysis of the structural dynamic interactions and excitation interactions. The overarching aim of the methods project is to predict the operational vibrations of engines. Simulations are usually used to analyze technical aspects (e. g. operational vibrations, strength, ...) of single components in the industrial development. The boundary conditions of submodels are mostly based on experiences. So the interactions with neighboring components and systems are neglected. To get physically more realistic results but still efficient simulations, this work wants to support the engineer during the preprocessing phase by useful criteria. At first suitable abstraction levels based on the existing literature are defined to identify structural dynamic interactions and excitation interactions of coupled systems. So it is possible to separate different effects of the coupled subsystems. On this basis, criteria are derived to assess the influence of interactions between the considered systems. These criteria can be used during the preprocessing phase and help the engineer to build up efficient models with respect to the interactions with neighboring systems. The method was developed by using several models with different complexity levels. Furthermore, the method is proved for the application in the industrial environment by using the example of a current combustion engine.
Computational Analysis of Woven Fabric Composites: Single- and Multi-Objective Optimizations and Sensitivity Analysis in Meso-scale Structures (2020)
Abu Bakar, Ilyani Akmar
This study permits a reliability analysis to solve the mechanical behaviour issues existing in the current structural design of fabric structures. Purely predictive material models are highly desirable to facilitate an optimized design scheme and to significantly reduce time and cost at the design stage, such as experimental characterization. The present study examined the role of three major tasks; a) single-objective optimization, b) sensitivity analyses and c) multi-objective optimization on proposed weave structures for woven fabric composites. For single-objective optimization task, the first goal is to optimize the elastic properties of proposed complex weave structure under unit cells basis based on periodic boundary conditions. We predict the geometric characteristics towards skewness of woven fabric composites via Evolutionary Algorithm (EA) and a parametric study. We also demonstrate the effect of complex weave structures on the fray tendency in woven fabric composites via tightness evaluation. We utilize a procedure which does not require a numerical averaging process for evaluating the elastic properties of woven fabric composites. The fray tendency and skewness of woven fabrics depends upon the behaviour of the floats which is related to the factor of weave. Results of this study may suggest a broader view for further research into the effects of complex weave structures or may provide an alternative to the fray and skewness problems of current weave structure in woven fabric composites. A comprehensive study is developed on the complex weave structure model which adopts the dry woven fabric of the most potential pattern in singleobjective optimization incorporating the uncertainties parameters of woven fabric composites. The comprehensive study covers the regression-based and variance-based sensitivity analyses. The second task goal is to introduce the fabric uncertainties parameters and elaborate how they can be incorporated into finite element models on macroscopic material parameters such as elastic modulus and shear modulus of dry woven fabric subjected to uni-axial and biaxial deformations. Significant correlations in the study, would indicate the need for a thorough investigation of woven fabric composites under uncertainties parameters. The study describes here could serve as an alternative to identify effective material properties without prolonged time consumption and expensive experimental tests. The last part focuses on a hierarchical stochastic multi-scale optimization approach (fine-scale and coarse-scale optimizations) under geometrical uncertainties parameters for hybrid composites considering complex weave structure. The fine-scale optimization is to determine the best lamina pattern that maximizes its macroscopic elastic properties, conducted by EA under the following uncertain mesoscopic parameters: yarn spacing, yarn height, yarn width and misalignment of yarn angle. The coarse-scale optimization has been carried out to optimize the stacking sequences of symmetric hybrid laminated composite plate with uncertain mesoscopic parameters by employing the Ant Colony Algorithm (ACO). The objective functions of the coarse-scale optimization are to minimize the cost (C) and weight (W) of the hybrid laminated composite plate considering the fundamental frequency and the buckling load factor as the design constraints. Based on the uncertainty criteria of the design parameters, the appropriate variation required for the structural design standards can be evaluated using the reliability tool, and then an optimized design decision in consideration of cost can be subsequently determined.
Reference Surface-Based System Identification (2013)
Ahmad, Sofyan
Environmental and operational variables and their impact on structural responses have been acknowledged as one of the most important challenges for the application of the ambient vibration-based damage identification in structures. The damage detection procedures may yield poor results, if the impacts of loading and environmental conditions of the structures are not considered. The reference-surface-based method, which is proposed in this thesis, is addressed to overcome this problem. In the proposed method, meta-models are used to take into account significant effects of the environmental and operational variables. The usage of the approximation models, allows the proposed method to simply handle multiple non-damaged variable effects simultaneously, which for other methods seems to be very complex. The input of the meta-model are the multiple non-damaged variables while the output is a damage indicator. The reference-surface-based method diminishes the effect of the non-damaged variables to the vibration based damage detection results. Hence, the structure condition that is assessed by using ambient vibration data at any time would be more reliable. Immediate reliable information regarding the structure condition is required to quickly respond to the event, by means to take necessary actions concerning the future use or further investigation of the structures, for instance shortly after extreme events such as earthquakes. The critical part of the proposed damage detection method is the learning phase, where the meta-models are trained by using input-output relation of observation data. Significant problems that may encounter during the learning phase are outlined and some remedies to overcome the problems are suggested. The proposed damage identification method is applied to numerical and experimental models. In addition to the natural frequencies, wavelet energy and stochastic subspace damage indicators are used.
WAVELET-BASED INDICATORS FOR RESPONSE SURFACE MODELS IN DAMAGE IDENTIFICATION OF STRUCTURES (2012)
Ahmad, Sofyan ; Zabel, Volkmar ; Könke, Carsten
In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.
Evaluation of electrical efficiency of photovoltaic thermal solar collector (2020)
Ahmadi, Mohammad Hossein ; Baghban, Alireza ; Sadeghzadeh, Milad ; Zamen, Mohammad ; Mosavi, Amir ; Shamshirband, Shahaboddin ; Kumar, Ravinder ; Mohammadi-Khanaposhtani, Mohammad
In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the input variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced models and evaluate their performances. The proposed LSSVM model outperformed the ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.
An Enhanced Full Waveform Inversion Method for the Structural Analysis of Dams (2019)
Alalade, Muyiwa
Since the Industrial Revolution in the 1700s, the high emission of gaseous wastes into the atmosphere from the usage of fossil fuels has caused a general increase in temperatures globally. To combat the environmental imbalance, there is an increase in the demand for renewable energy sources. Dams play a major role in the generation of “green" energy. However, these structures require frequent and strict monitoring to ensure safe and efficient operation. To tackle the challenges faced in the application of convention dam monitoring techniques, this work proposes the inverse analysis of numerical models to identify damaged regions in the dam. Using a dynamic coupled hydro-mechanical Extended Finite Element Method (XFEM) model and a global optimization strategy, damage (crack) in the dam is identified. By employing seismic waves to probe the dam structure, a more detailed information on the distribution of heterogeneous materials and damaged regions are obtained by the application of the Full Waveform Inversion (FWI) method. The FWI is based on a local optimization strategy and thus it is highly dependent on the starting model. A variety of data acquisition setups are investigated, and an optimal setup is proposed. The effect of different starting models and noise in the measured data on the damage identification is considered. Combining the non-dependence of a starting model of the global optimization strategy based dynamic coupled hydro-mechanical XFEM method and the detailed output of the local optimization strategy based FWI method, an enhanced Full Waveform Inversion is proposed for the structural analysis of dams.
  • 1 to 10
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018