### Refine

#### Institute

#### Keywords

- Computerunterstütztes Verfahren (36) (remove)

#### Year of publication

- 2012 (36) (remove)

In this paper experimental studies and numerical analysis carried out on reinforced concrete beam are partially reported. They aimed to apply the rigid finite element method to calculations for reinforced concrete beams using discrete crack model. Hence rotational ductility resulting from crack occurrence had to be determined. A relationship for calculating it in static equilibrium was proposed. Laboratory experiments proved that dynamic ductility is considerably smaller. Therefore scaling of the empirical parameter was carried out. Consequently a formula for its value depending on reinforcement ratio was obtained.

This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order.

In this paper we review two distint complete orthogonal systems of monogenic polynomials over 3D prolate spheroids. The underlying functions take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4), and are generally assumed to be nullsolutions of the well known Riesz and Moisil Théodoresco systems in R3. This will be done in the spaces of square integrable functions over R and H. The representations of these polynomials are explicitly given. Additionally, we show that these polynomial functions play an important role in defining the Szegö kernel function over the surface of 3D spheroids. As a concrete application, we prove the explicit expression of the monogenic Szegö kernel function over 3D prolate spheroids.

Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model.

Civil engineers take advantage of models to design reliable structures. In order to fulfill the design goal with a certain amount of confidence, the utilized models should be able to predict the probable structural behavior under the expected loading schemes. Therefore, a major challenge is to find models which provide less uncertain and more robust responses. The problem gets even twofold when the model to be studied is a global model comprised of different interacting partial models. This study aims at model quality evaluation of global models with a focus on frame-wall systems as the case study. The paper, presents the results of the first step taken toward accomplishing this goal. To start the model quality evaluation of the global frame-wall system, the main element (i.e. the wall) was studied through nonlinear static and dynamic analysis using two different modeling approaches. The two selected models included the fiber section model and the Multiple-Vertical-Line-Element-Model (MVLEM). The influence of the wall aspect ratio (H=L) and the axial load on the response of the models was studied. The results from nonlinear static and dynamic analysis of both models are presented and compared. The models resulted in quite different responses in the range of low aspect ratio walls under large axial loads due to different contribution of the shear deformations to the top displacement. In the studied cases, the results implied that careful attention should be paid to the model quality evaluation of the wall models specifically when they are supposed to be coupled to other partial models such as a moment frame or a soil-footing substructure which their response is sensitive to shear deformations. In this case, even a high quality wall model would not result in a high quality coupled system since it fails to interact properly with the rest of the system.

The aim of our contribution is to clarify the relation between totally regular variables and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called monogenic power-like functions) in Hypercomplex Function Theory. After their introduction in 2006 by two of the authors of this note on the occasion of the 17th IKM, the latter have been subject of investigations by different authors with different methods and in various contexts. The former concept, introduced by R. Delanghe in 1970 and later also studied by K. Gürlebeck in 1982 for the case of quaternions, has some obvious relationship with the latter, since it describes a set of linear hypercomplex holomorphic functions all power of which are also hypercomplex holomorphic. Due to the non-commutative nature of the underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial properties as it is for the integer powers of the complex variable z=x+ iy. Simple examples show also, that not every totally regular variable and its powers form an Appell sequence and vice versa. Under some very natural normalization condition the set of all para-vector valued totally regular variables which are also Appell sequences will completely be characterized. In some sense the result can also be considered as an answer to a remark of K. Habetha in chapter 16: Function theory in algebras of the collection Complex analysis. Methods, trends, and applications, Akademie-Verlag Berlin, (Eds. E. Lanckau and W. Tutschke) 225-237 (1983) on the use of exact copies of several complex variables for the power series representation of any hypercomplex holomorphic function.

This paper presents a robust model updating strategy for system identification of wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sensitivity analysis using the elementary effects method is conducted. The formulation of the objective function is based on M¨uller-Slany’s strategy for multi-criteria functions. As a simulationbased optimization, a simulation adapter is developed to interface the simulation software ANSYS and the locally developed optimization software MOPACK. Model updating is firstly tested on the beam model of the rotor blade. The defect between the numerical model and the reference has been markedly reduced by the process of model updating. The effect of model updating becomes more pronounced in the comparison of the measured and the numerical properties of the wind turbine model. The deviations of the frequencies of the updated model are rather small. The complete comparison including the free vibration modes by the modal assurance criteria shows the excellent coincidence of the modal parameters of the updated model with the ones from the measurements. By successful implementation of the model validation via model updating, the applicability and effectiveness of the solution concept has been demonstrated.

This paper is focused on the first numerical tests for coupling between analytical solution and finite element method on the example of one problem of fracture mechanics. The calculations were done according to ideas proposed in [1]. The analytical solutions are constructed by using an orthogonal basis of holomorphic and anti-holomorphic functions. For coupling with finite element method the special elements are constructed by using the trigonometric interpolation theorem.

It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.