### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (15)
- Professur Angewandte Mathematik (8)
- Graduiertenkolleg 1462 (4)
- Institut für Strukturmechanik (4)
- Professur Informatik im Bauwesen (4)
- Institut für Konstruktiven Ingenieurbau (2)
- Juniorprofessur Stochastik und Optimierung (2)
- Professur Computer Vision in Engineering (2)
- Professur Baubetrieb und Bauverfahren (1)

#### Keywords

- Computerunterstütztes Verfahren (35) (remove)

#### Year of publication

- 2015 (35) (remove)

Modern distributed engineering applications are based on complex systems consisting of various subsystems that are connected through the Internet. Communication and collaboration within an entire system requires reliable and efficient data exchange between the subsystems. Middleware developed within the web evolution during the past years provides reliable and efficient data exchange for web applications, which can be adopted for solving the data exchange problems in distributed engineering applications. This paper presents a generic approach for reliable and efficient data exchange between engineering devices using existing middleware known from web applications. Different existing middleware is examined with respect to the suitability in engineering applications. In this paper, a suitable middleware is shown and a prototype implementation simulating distributed wind farm control is presented and validated using several performance measurements.

What is nowadays called (classic) Clifford analysis consists in the establishment of a function theory for functions belonging to the kernel of the Dirac operator. While such functions can very well describe problems of a particle with internal SU(2)-symmetries, higher order symmetries are beyond this theory. Although many modifications (such as Yang-Mills theory) were suggested over the years they could not address the principal problem, the need of a n-fold factorization of the d’Alembert operator. In this paper we present the basic tools of a fractional function theory in higher dimensions, for the transport operator (alpha = 1/2 ), by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers are constructed.

The stress state of a piecewise-homogeneous elastic body, which has a semi-infinite crack along the interface, under in-plane and antiplane loads is considered. One of the crack edges is reinforced by a rigid patch plate on a finite interval adjacent to the crack tip. The crack edges are loaded with specified stresses. The body is stretched at infinity by specified stresses. External forces with a given principal vector and moment act on the patch plate. The problem reduces to a Riemann-Hilbert boundary-value matrix problem with a piecewise-constant coefficient for two complex potentials in the plane case and for one in the antiplane case. The complex potentials are found explicitly using a Gaussian hypergeometric function. The stress state of the body close to the ends of the patch plate, one of which is also simultaneously the crack tip, is investigated. Stress intensity factors near the singular points are determined.

IFC-BASED MONITORING INFORMATION MODELING FOR DATA MANAGEMENT IN STRUCTURAL HEALTH MONITORING
(2015)

This conceptual paper discusses opportunities and challenges towards the digital representation of structural health monitoring systems using the Industry Foundation Classes (IFC) standard. State-of-the-art sensor nodes, collecting structural and environmental data from civil infrastructure systems, are capable of processing and analyzing the data sets directly on-board the nodes. Structural health monitoring (SHM) based on sensor nodes that possess so called “on-chip intelligence” is, in this study, referred to as “intelligent SHM”, and the infrastructure system being equipped with an intelligent SHM system is referred to as “intelligent infrastructure”. Although intelligent SHM will continue to grow, it is not possible, on a well-defined formalism, to digitally represent information about sensors, about the overall SHM system, and about the monitoring strategies being implemented (“monitoring-related information”). Based on a review of available SHM regulations and guidelines as well as existing sensor models and sensor modeling languages, this conceptual paper investigates how to digitally represent monitoring-related information in a semantic model. With the Industry Foundation Classes, there exists an open standard for the digital representation of building information; however, it is not possible to represent monitoring-related information using the IFC object model. This paper proposes a conceptual approach for extending the current IFC object model in order to include monitoring-related information. Taking civil infrastructure systems as an illustrative example, it becomes possible to adequately represent, process, and exchange monitoring-related information throughout the whole life cycle of civil infrastructure systems, which is referred to as monitoring information modeling (MIM). However, since this paper is conceptual, additional research efforts are required to further investigate, implement, and validate the proposed concepts and methods.

The paper introduces a systematic construction management approach, supporting expansion of a specified construction process, both automatically and semi-automatically. Throughout the whole design process, many requirements must be taken into account in order to fulfil demands defined by clients. In implementing those demands into a design concept up to the execution plan, constraints such as site conditions, building code, and legal framework are to be considered. However, complete information, which is needed to make a sound decision, is not yet acquired in the early phase. Decisions are traditionally taken based on experience and assumptions. Due to a vast number of appropriate available solutions, particularly in building projects, it is necessary to make those decisions traceable. This is important in order to be able to reconstruct considerations and assumptions taken, should there be any changes in the future project’s objectives. The research will be carried out by means of building information modelling, where rules deriving from standard logics of construction management knowledge will be applied. The knowledge comprises a comprehensive interaction amongst bidding process, cost-estimation, construction site preparation as well as specific project logistics – which are usually still separately considered. By means of these rules, favourable decision taking regarding prefabrication and in-situ implementation can be justified. Modifications depending on the available information within current design stage will consistently be traceable.

From the design experiences of arch dams in the past, it has significant practical value to carry out the shape optimization of arch dams, which can fully make use of material characteristics and reduce the cost of constructions. Suitable variables need to be chosen to formulate the objective function, e.g. to minimize the total volume of the arch dam. Additionally a series of constraints are derived and a reasonable and convenient penalty function has been formed, which can easily enforce the characteristics of constraints and optimal design. For the optimization method, a Genetic Algorithm is adopted to perform a global search. Simultaneously, ANSYS is used to do the mechanical analysis under the coupling of thermal and hydraulic loads. One of the constraints of the newly designed dam is to fulfill requirements on the structural safety. Therefore, a reliability analysis is applied to offer a good decision supporting for matters concerning predictions of both safety and service life of the arch dam. By this, the key factors which would influence the stability and safety of arch dam significantly can be acquired, and supply a good way to take preventive measures to prolong ate the service life of an arch dam and enhances the safety of structure.

The sizing of simple resonators like guitar strings or laser mirrors is directly connected to the wavelength and represents no complex optimisation problem. This is not the case with liquid-filled acoustic resonators of non-trivial geometries, where several masses and stiffnesses of the structure and the fluid have to fit together. This creates a scenario of many competing and interacting resonances varying in relative strength and frequency when design parameters change. Hence, the resonator design involves a parameter-tuning problem with many local optima. As its solution evolutionary algorithms (EA) coupled to a forced-harmonic FE simulation are presented. A new hybrid EA is proposed and compared to two state-of-theart EAs based on selected test problems. The motivating background is the search for better resonators suitable for sonofusion experiments where extreme states of matter are sought in collapsing cavitation bubbles.

The Laguerre polynomials appear naturally in many branches of pure and applied mathematics and mathematical physics. Debnath introduced the Laguerre transform and derived some of its properties. He also discussed the applications in study of heat conduction and to the oscillations of a very long and heavy chain with variable tension. An explicit boundedness for some class of Laguerre integral transforms will be present.

In photogrammetry and computer vision the trifocal tensor is used to describe the geometric relation between projections of points in three views. In this paper we analyze the stability and accuracy of the metric trifocal tensor for calibrated cameras. Since a minimal parameterization of the metric trifocal tensor is challenging, the additional constraints of the interior orientation are applied to the well-known projective 6-point and 7-point algorithms for three images. The experimental results show that the linear 7-point algorithm fails for some noise-free degenerated cases, whereas the minimal 6-point algorithm seems to be competitive even with realistic noise.

This study contributes to the identification of coupled THM constitutive model parameters via back analysis against information-rich experiments. A sampling based back analysis approach is proposed comprising both the model parameter identification and the assessment of the reliability of identified model parameters. The results obtained in the context of buffer elements indicate that sensitive parameter estimates generally obey the normal distribution. According to the sensitivity of the parameters and the probability distribution of the samples we can provide confidence intervals for the estimated parameters and thus allow a qualitative estimation on the identified parameters which are in future work used as inputs for prognosis computations of buffer elements. These elements play e.g. an important role in the design of nuclear waste repositories.