### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (18) (remove)

#### Keywords

- Computerunterstütztes Verfahren (18) (remove)

#### Year of publication

- 2012 (18) (remove)

DISCRETE CRACK MODEL OF BORCZ FOR CALCULATING THE DEFLECTIONS OF BENDING REINFORCED CONCRETE BEAM
(2012)

In the design of the reinforced concrete beams loaded by the bending moment, it is assumed that the structure can be used at a level of load, that there are local discontinuities - cracks. Designing the element demands checking two limit states of construction, load capacity and usability. Limit states usability include also the deflection of the element. Deflections in the reinforced concrete beams with cracks are based on actual rigidity of the element. After cracking there is a local change in rigidity of the beam. The rigidity is variable in the element’s length and due to the heterogeneous structure of concrete, it is not possible to clearly describe those changes. Most standards of testing methods tend to simplify the calculations and take the average value of the beam’s rigidity on its entire length. The rigidity depends on the level of the maximal load of the beam. Experimental researches verify the value by inserting the coefficients into the formulas used in the theory of elasticity. The researches describe the changes in rigidity in the beam’s length more precisely. The authors take into consideration the change of rigidity, depending on the level of maximum load (continuum models), or localize the changes in rigidity in the area of the cracks (discrete models). This paper presents one of the discrete models. It is distinguished by the fact that the left side of the differential equation, that depends on the rigidity, is constant, and all effects associated with the scratches are taken as the external load and placed on the right side of the equation. This allows to generalize the description. The paper presents a particular integral of the differential equation, which allow analyzing the displacement and vibration for different rigidity of the silo’s walls, the flow rate and type of the flowing material.

MODEL DESCRIBING STATIC AND DYNAMIC DISPLACEMENTS OF SILOS WALL DURING THE FLOW OF LOOSE MATERIAL
(2012)

Correct evaluation of wall displacements is a key matter when designing silos. This issue is important from both the standpoint of design engineer (load-bearing capacity of structures) and end-consumer (durability of structures). Commonplace methods of silo design mainly focus on satisfying limit states of load-bearing capacity. Current standards fail to specify methods of dynamic displacements analysis. Measurements of stressacting on silo walls prove that the actual stress is sum of static and dynamic stresses. Janssen came up with differential equation describing state of static equilibrium in cross-section of a silo. By solving the equation static stress of granular solid on silo walls can be determined. Equations of motion were determined from equilibrium equations of feature objects. General solution, describing dynamic stresses was presented as parametric model. This paper presents particular integrals of differential equation, which enable analysing displacements and vibrations for different rigidities of silo walls, types of granular solid and its flow rate.

A concept of non-commutative Galois extension is introduced and binary and ternary extensions are chosen. Non-commutative Galois extensions of Nonion algebra and su(3) are constructed. Then ternary and binary Clifford analysis are introduced for non-commutative Galois extensions and the corresponding Dirac operators are associated.

The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960’s to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.

BAUHAUS ISOMETRY AND FIELDS
(2012)

While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session.

In this paper experimental studies and numerical analysis carried out on reinforced concrete beam are partially reported. They aimed to apply the rigid finite element method to calculations for reinforced concrete beams using discrete crack model. Hence rotational ductility resulting from crack occurrence had to be determined. A relationship for calculating it in static equilibrium was proposed. Laboratory experiments proved that dynamic ductility is considerably smaller. Therefore scaling of the empirical parameter was carried out. Consequently a formula for its value depending on reinforcement ratio was obtained.

In this paper we review two distint complete orthogonal systems of monogenic polynomials over 3D prolate spheroids. The underlying functions take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4), and are generally assumed to be nullsolutions of the well known Riesz and Moisil Théodoresco systems in R3. This will be done in the spaces of square integrable functions over R and H. The representations of these polynomials are explicitly given. Additionally, we show that these polynomial functions play an important role in defining the Szegö kernel function over the surface of 3D spheroids. As a concrete application, we prove the explicit expression of the monogenic Szegö kernel function over 3D prolate spheroids.

Due to the complex interactions between the ground, the driving machine, the lining tube and the built environment, the accurate assignment of in-situ system parameters for numerical simulation in mechanized tunneling is always subject to tremendous difficulties. However, the more accurate these parameters are, the more applicable the responses gained from computations will be. In particular, if the entire length of the tunnel lining is examined, then, the appropriate selection of various kinds of ground parameters is accountable for the success of a tunnel project and, more importantly, will prevent potential casualties. In this context, methods of system identification for the adaptation of numerical simulation of ground models are presented. Hereby, both deterministic and probabilistic approaches are considered for typical scenarios representing notable variations or changes in the ground model.

The aim of our contribution is to clarify the relation between totally regular variables and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called monogenic power-like functions) in Hypercomplex Function Theory. After their introduction in 2006 by two of the authors of this note on the occasion of the 17th IKM, the latter have been subject of investigations by different authors with different methods and in various contexts. The former concept, introduced by R. Delanghe in 1970 and later also studied by K. Gürlebeck in 1982 for the case of quaternions, has some obvious relationship with the latter, since it describes a set of linear hypercomplex holomorphic functions all power of which are also hypercomplex holomorphic. Due to the non-commutative nature of the underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial properties as it is for the integer powers of the complex variable z=x+ iy. Simple examples show also, that not every totally regular variable and its powers form an Appell sequence and vice versa. Under some very natural normalization condition the set of all para-vector valued totally regular variables which are also Appell sequences will completely be characterized. In some sense the result can also be considered as an answer to a remark of K. Habetha in chapter 16: Function theory in algebras of the collection Complex analysis. Methods, trends, and applications, Akademie-Verlag Berlin, (Eds. E. Lanckau and W. Tutschke) 225-237 (1983) on the use of exact copies of several complex variables for the power series representation of any hypercomplex holomorphic function.