### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (18) (remove)

#### Keywords

- Computerunterstütztes Verfahren (18) (remove)

#### Year of publication

- 2012 (18) (remove)

Electromagnetic wave propagation is currently present in the vast majority of situations which occur in veryday life, whether in mobile communications, DTV, satellite tracking, broadcasting, etc. Because of this the study of increasingly complex means of propagation of lectromagnetic waves has become necessary in order to optimize resources and increase the capabilities of the devices as required by the growing demand for such services.
Within the electromagnetic wave propagation different parameters are considered that characterize it under various circumstances and of particular importance are the reflectance and transmittance. There are several methods or the analysis of the reflectance and transmittance such as the method of approximation by boundary condition, the plane wave expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods.
The implementation of the WKB method is relatively simple but is found to be relatively efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a new representation for solutions of Sturm Liouville equations and has recently proven to be a powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a very suitable structure for numerical implementation, which in this case took place in the Matlab software for the valuation of both conventional and turning points profiles.
The comparison between the two methods allows us to obtain valuable information about their perfor mance which is useful for determining the validity and propriety of their application for solving problems where these parameters are calculated in real life applications.

We study the Weinstein equation u on the upper half space R3+. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending on the hyperbolic distance and x2. These results imply the explicit mean value properties. We also compute the fundamental solution. The main tools are the hyperbolic metric and its invariance properties.

New foundations for geometric algebra are proposed based upon the existing isomorphisms between geometric and matrix algebras. Each geometric algebra always has a faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra is always embedded in a geometric algebra of a convenient dimension. The geometric product is also isomorphic to the matrix product, and many vector transformations such as rotations, axial symmetries and Lorentz transformations can be written in a form isomorphic to a similarity transformation of matrices. We collect the idea that Dirac applied to develop the relativistic electron equation when he took a basis of matrices for the geometric algebra instead of a basis of geometric vectors. Of course, this way of understanding the geometric algebra requires new definitions: the geometric vector space is defined as the algebraic subspace that generates the rest of the matrix algebra by addition and multiplication; isometries are simply defined as the similarity transformations of matrices as shown above, and finally the norm of any element of the geometric algebra is defined as the nth root of the determinant of its representative matrix of order n×n. The main idea of this proposal is an arithmetic point of view consisting of reversing the roles of matrix and geometric algebras in the sense that geometric algebra is a way of accessing, working and understanding the most fundamental conception of matrix algebra as the algebra of transformations of multilinear quantities.

We briefly review and use the recent comprehensive research on the manifolds of square roots of −1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem.

Bridge vibration due to traffic loading has been subject of extensive research in the last decades. Such studies are concerned with deriving solutions for the bridge-vehicle interaction (BVI) and analyzing the dynamic responses considering randomness of the coupled model’s (BVI) input parameters and randomness of road unevenness. This study goes further to examine the effects of such randomness of input parameters and processes on the variance of dynamic responses in quantitative measures. The input parameters examined in the sensitivity analysis are, stiffness and damping of vehicle’s suspension system, axle spacing, and stiffness and damping of bridge. This study also examines the effects of the initial excitation of a vehicle on the influences of the considered input parameters. Variance based sensitivity analysis is often applied to deterministic models. However, the models for the dynamic problem is a stochastic one due to the simulations of the random processes. Thus, a setting using a joint meta-model; one for the mean response and other for the dispersion of the response is developed. The joint model is developed within the framework of Generalized Linear Models (GLM). An enhancement of the GLM procedure is suggested and tested; this enhancement incorporates Moving Least Squares (MLS) approximation algorithms in the fitting of the mean component of the joint model. The sensitivity analysis is then performed on the joint-model developed for the dynamic responses caused by BVI.

In this paper we review two distint complete orthogonal systems of monogenic polynomials over 3D prolate spheroids. The underlying functions take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4), and are generally assumed to be nullsolutions of the well known Riesz and Moisil Théodoresco systems in R3. This will be done in the spaces of square integrable functions over R and H. The representations of these polynomials are explicitly given. Additionally, we show that these polynomial functions play an important role in defining the Szegö kernel function over the surface of 3D spheroids. As a concrete application, we prove the explicit expression of the monogenic Szegö kernel function over 3D prolate spheroids.

In this paper experimental studies and numerical analysis carried out on reinforced concrete beam are partially reported. They aimed to apply the rigid finite element method to calculations for reinforced concrete beams using discrete crack model. Hence rotational ductility resulting from crack occurrence had to be determined. A relationship for calculating it in static equilibrium was proposed. Laboratory experiments proved that dynamic ductility is considerably smaller. Therefore scaling of the empirical parameter was carried out. Consequently a formula for its value depending on reinforcement ratio was obtained.

BAUHAUS ISOMETRY AND FIELDS
(2012)

While integration increases by networking, segregation strides ahead too. Most of us fixate our mind on special topics. Yet we are relying on our intuition too. We are sometimes waiting for the inflow of new ideas or valuable information that we hold in high esteem, although we are not entirely conscious of its origin. We may even say the most precious intuitions are rooting in deep subconscious, collective layers of the mind. Take as a simple example the emergence of orientation in paleolithic events and its relation to the dihedral symmetry of the compass. Consider also the extension of this algebraic matter into the operational structures of the mind on the one hand and into the algebra of geometry, Clifford algebra as we use to call it today, on the other. Culture and mind, and even the individual act of creation may be connected with transient events that are subconscious and inaccessible to cognition in principle. Other events causative for our work may be merely invisible too us, though in principle they should turn out attainable. In this case we are just ignorant of the whole creative process. Sometimes we begin to use unusual tools or turn into handicraft enthusiasts. Then our small institutes turn into workshops and factories. All this is indeed joining with the Bauhaus and its spirit. We shall go together into this, and we shall present a record of this session.

The Bernstein polynomials are used for important applications in many branches of Mathematics and the other sciences, for instance, approximation theory, probability theory, statistic theory, num- ber theory, the solution of the di¤erential equations, numerical analysis, constructing Bezier curves, q-calculus, operator theory and applications in computer graphics. The Bernstein polynomials are used to construct Bezier curves. Bezier was an engineer with the Renault car company and set out in the early 1960’s to develop a curve formulation which would lend itself to shape design. Engineers may …nd it most understandable to think of Bezier curves in terms of the center of mass of a set of point masses. Therefore, in this paper, we study on generating functions and functional equations for these polynomials. By applying these functions, we investigate interpolation function and many properties of these polynomials.