### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (49) (remove)

#### Keywords

- Computerunterstütztes Verfahren (49) (remove)

#### Year of publication

- 2010 (49) (remove)

We consider a structural truss problem where all of the physical model parameters are uncertain: not just the material values and applied loads, but also the positions of the nodes are assumed to be inexact but bounded and are represented by intervals. Such uncertainty may typically arise from imprecision during the process of manufacturing or construction, or round-off errors. In this case the application of the finite element method results in a system of linear equations with numerous interval parameters which cannot be solved conventionally. Applying a suitable variable substitution, an iteration method for the solution of a parametric system of linear equations is firstly employed to obtain initial bounds on the node displacements. Thereafter, an interval tightening (pruning) technique is applied, firstly on the element forces and secondly on the node displacements, in order to obtain tight guaranteed enclosures for the interval solutions for the forces and displacements.

In the past, several types of Fourier transforms in Clifford analysis have been studied. In this paper, first an overview of these different transforms is given. Next, a new equation in a Clifford algebra is proposed, the solutions of which will act as kernels of a new class of generalized Fourier transforms. Two solutions of this equation are studied in more detail, namely a vector-valued solution and a bivector-valued solution, as well as the associated integral transforms.

Fuzzy functions are suitable to deal with uncertainties and fuzziness in a closed form maintaining the informational content. This paper tries to understand, elaborate, and explain the problem of interpolating crisp and fuzzy data using continuous fuzzy valued functions. Two main issues are addressed here. The first covers how the fuzziness, induced by the reduction and deficit of information i.e. the discontinuity of the interpolated points, can be evaluated considering the used interpolation method and the density of the data. The second issue deals with the need to differentiate between impreciseness and hence fuzziness only in the interpolated quantity, impreciseness only in the location of the interpolated points and impreciseness in both the quantity and the location. In this paper, a brief background of the concept of fuzzy numbers and of fuzzy functions is presented. The numerical side of computing with fuzzy numbers is concisely demonstrated. The problem of fuzzy polynomial interpolation, the interpolation on meshes and mesh free fuzzy interpolation is investigated. The integration of the previously noted uncertainty into a coherent fuzzy valued function is discussed. Several sets of artificial and original measured data are used to examine the mentioned fuzzy interpolations.

In order to make control decisions, Smart Buildings need to collect data from multiple sources and bring it to a central location, such as the Building Management System (BMS). This needs to be done in a timely and automated fashion. Besides data being gathered from different energy using elements, information of occupant behaviour is also important for a building’s requirement analysis. In this paper, the parameter of Occupant Density was considered to help find behaviour of occupants towards a building space. Through this parameter, support for building energy consumption and requirements based on occupant need and demands was provided. The demonstrator presented provides information on the number of people present in a particular building space at any time, giving the space density. Such collections of density data made over a certain period of time represents occupant behaviour towards the building space, giving its usage patterns. Similarly, inventory items were tracked and monitored for moving out or being brought into a particular read zone. For both, people and inventory items, this was achieved using small, low-cost, passive Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) tags. Occupants were given the tags in a form factor of a credit card to be possessed at all times. A central database was built where occupant and inventory information for a particular building space was maintained for monitoring and providing a central data access.

In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method.

In this note, we describe quite explicitly the Howe duality for Hodge systems and connect it with the well-known facts of harmonic analysis and Clifford analysis. In Section 2, we recall briefly the Fisher decomposition and the Howe duality for harmonic analysis. In Section 3, the well-known fact that Clifford analysis is a real refinement of harmonic analysis is illustrated by the Fisher decomposition and the Howe duality for the space of spinor-valued polynomials in the Euclidean space under the so-called L-action. On the other hand, for Clifford algebra valued polynomials, we can consider another action, called in Clifford analysis the H-action. In the last section, we recall the Fisher decomposition for the H-action obtained recently. As in Clifford analysis the prominent role plays the Dirac equation in this case the basic set of equations is formed by the Hodge system. Moreover, analysis of Hodge systems can be viewed even as a refinement of Clifford analysis. In this note, we describe the Howe duality for the H-action. In particular, in Proposition 1, we recognize the Howe dual partner of the orthogonal group O(m) in this case as the Lie superalgebra sl(2 1). Furthermore, Theorem 2 gives the corresponding multiplicity free decomposition with an explicit description of irreducible pieces.

THE FOURIER-BESSEL TRANSFORM
(2010)

In this paper we devise a new multi-dimensional integral transform within the Clifford analysis setting, the so-called Fourier-Bessel transform. It appears that in the two-dimensional case, it coincides with the Clifford-Fourier and cylindrical Fourier transforms introduced earlier. We show that this new integral transform satisfies operational formulae which are similar to those of the classical tensorial Fourier transform. Moreover the L2-basis elements consisting of generalized Clifford-Hermite functions appear to be eigenfunctions of the Fourier-Bessel transform.

This paper describes the application of interval calculus to calculation of plate deflection, taking in account inevitable and acceptable tolerance of input data (input parameters). The simply supported reinforced concrete plate was taken as an example. The plate was loaded by uniformly distributed loads. Several parameters that influence the plate deflection are given as certain closed intervals. Accordingly, the results are obtained as intervals so it was possible to follow the direct influence of a change of one or more input parameters on output (in our example, deflection) values by using one model and one computing procedure. The described procedure could be applied to any FEM calculation in order to keep calculation tolerances, ISO-tolerances, and production tolerances in close limits (admissible limits). The Wolfram Mathematica has been used as tool for interval calculation.

This paper deals with the modelling and the analysis of masonry vaults. Numerical FEM analyses are performed using LUSAS code. Two vault typologies are analysed (barrel and cross-ribbed vaults) parametrically varying geometrical proportions and constraints. The proposed model and the developed numerical procedure are implemented in a computer analysis. Numerical applications are developed to assess the model effectiveness and the efficiency of the numerical procedure. The main object of the present paper is the development of a computational procedure which allows to define 3D structural behaviour of masonry vaults. For each investigated example, the homogenized limit analysis approach has been employed to predict ultimate load and failure mechanisms. Finally, both a mesh dependence study and a sensitivity analysis are reported. Sensitivity analysis is conducted varying in a wide range mortar tensile strength and mortar friction angle with the aim of investigating the influence of the mechanical properties of joints on collapse load and failure mechanisms. The proposed computer model is validated by a comparison with experimental results available in the literature.

In recent years special hypercomplex Appell polynomials have been introduced by several authors and their main properties have been studied by different methods and with different objectives. Like in the classical theory of Appell polynomials, their generating function is a hypercomplex exponential function. The observation that this generalized exponential function has, for example, a close relationship with Bessel functions confirmed the practical significance of such an approach to special classes of hypercomplex differentiable functions. Its usefulness for combinatorial studies has also been investigated. Moreover, an extension of those ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences. Here we show how this opens the way for a more systematic study of the relation between some classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.