### Refine

#### Institute

- In Zusammenarbeit mit der Bauhaus-Universität Weimar (8) (remove)

#### Keywords

- Computerunterstütztes Verfahren (8) (remove)

In this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we only obtain inequality relations in the polymonogenic setting. This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function consists of different monogenic component functions where each of them can have a totally different kind of asymptotic growth behavior.

The aim of this paper we discuss explicit series constructions for the fundamental solution of the Helmholtz operator on some important examples non-orientable conformally at manifolds. In the context of this paper we focus on higher dimensional generalizations of the Klein bottle which in turn generalize higher dimensional Möbius strips that we discussed in preceding works. We discuss some basic properties of pinor valued solutions to the Helmholtz equation on these manifolds.

In this paper we present rudiments of a higher dimensional analogue of the Szegö kernel method to compute 3D mappings from elementary domains onto the unit sphere. This is a formal construction which provides us with a good substitution of the classical conformal Riemann mapping. We give explicit numerical examples and discuss a comparison of the results with those obtained alternatively by the Bergman kernel method.

ON THE NAVIER-STOKES EQUATION WITH FREE CONVECTION IN STRIP DOMAINS AND 3D TRIANGULAR CHANNELS
(2006)

The Navier-Stokes equations and related ones can be treated very elegantly with the quaternionic operator calculus developed in a series of works by K. Guerlebeck, W. Sproeossig and others. This study will be extended in this paper. In order to apply the quaternionic operator calculus to solve these types of boundary value problems fully explicitly, one basically needs to evaluate two types of integral operators: the Teodorescu operator and the quaternionic Bergman projector. While the integral kernel of the Teodorescu transform is universal for all domains, the kernel function of the Bergman projector, called the Bergman kernel, depends on the geometry of the domain. With special variants of quaternionic holomorphic multiperiodic functions we obtain explicit formulas for three dimensional parallel plate channels, rectangular block domains and regular triangular channels. The explicit knowledge of the integral kernels makes it then possible to evaluate the operator equations in order to determine the solutions of the boundary value problem explicitly.

In this paper we consider the time independent Klein-Gordon equation on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the fundamental solution. We show that we can represent any solution to the homogeneous Klein-Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon operator. These in turn are used to set up explicit formulas for the solution to the inhomogeneous version of the Klein-Gordon equation on the 3-torus.

A UNIFIED APPROACH FOR THE TREATMENT OF SOME HIGHER DIMENSIONAL DIRAC TYPE EQUATIONS ON SPHERES
(2010)

Using Clifford analysis methods, we provide a unified approach to obtain explicit solutions of some partial differential equations combining the n-dimensional Dirac and Euler operators, including generalizations of the classical time-harmonic Maxwell equations. The obtained regular solutions show strong connections between hypergeometric functions and homogeneous polynomials in the kernel of the Dirac operator.

In this paper we study the structure of the solutions to higher dimensional Dirac type equations generalizing the known λ-hyperholomorphic functions, where λ is a complex parameter. The structure of the solutions to the system of partial differential equations (D- λ) f=0 show a close connection with Bessel functions of first kind with complex argument. The more general system of partial differential equations that is considered in this paper combines Dirac and Euler operators and emphasizes the role of the Bessel functions. However, contrary to the simplest case, one gets now Bessel functions of any arbitrary complex order.