• Deutsch

Universitätsbibliothek
Weimar
Open Access

  • Home
  • Search
  • Browsen
  • Publish
  • FAQ

Refine

Has Fulltext

  • no (292)
  • yes (122)

Document Type

  • Article (232)
  • Conference Proceeding (133)
  • Doctoral Thesis (40)
  • Master's Thesis (5)
  • Preprint (3)
  • Habilitation (1)

Author

  • Rabczuk, Timon (132)
  • Könke, Carsten (52)
  • Lahmer, Tom (51)
  • Bucher, Christian (50)
  • Zabel, Volkmar (38)
  • Most, Thomas (35)
  • Brehm, Maik (29)
  • Bordas, Stéphane Pierre Alain (26)
  • Mosavi, Amir (24)
  • Vormwald, M. (21)
  • Jiang, Jin-Wu (20)
  • Nguyen-Xuan, Hung (20)
  • Zhuang, Xiaoying (20)
  • Shamshirband, Shahaboddin (19)
  • Eckardt, Stefan (17)
  • Unger, Jörg F. (16)
  • Zhao, Jun-Hua (15)
  • Häfner, Stefan (14)
  • Nabipour, Narjes (14)
  • Nguyen-Thanh, Nhon (14)
  • Luther, Torsten (13)
  • Areias, Pedro (12)
  • Zi, Goangseup (12)
  • Nguyen-Thoi, T. (10)
  • Döring, R. (9)
  • Kerfriden, Pierre (9)
  • Silani, Mohammad (9)
  • Talebi, Hossein (9)
  • Hoffmeyer, J. (8)
  • Muthu, Jacob (8)
  • Nanthakumar, S.S. (8)
  • Shokri, Manouchehr (8)
  • Harirchian, Ehsan (7)
  • Jia, Yue (7)
  • Markwardt, Klaus (7)
  • Seeger, T. (7)
  • Ghasemi, Hamid (6)
  • Higuchi, Shoko (6)
  • Macke, M. (6)
  • Mosavi, Amirhosein (6)
  • Savaidis, G. (6)
  • Schliebner, R. (6)
  • Schrader, Kai (6)
  • Vu-Bac, N. (6)
  • Wei, Ning (6)
  • Zhang, Yancheng (6)
  • Band, Shahab S. (5)
  • Budarapu, Pattabhi Ramaiah (5)
  • Dias-da-Costa, D. (5)
  • Ebert, Matthias (5)
  • Guo, Wanlin (5)
  • Nguyen-Tuan, Long (5)
  • Park, Harold S. (5)
  • Pham, Hoang Anh (5)
  • Schanz, Tom (5)
  • Bettzieche, Volker (4)
  • Cantieni, Reto (4)
  • Datcheva, Maria (4)
  • Natarajan, S. (4)
  • Nikulla, Susanne (4)
  • Schwedler, Michael (4)
  • Ahmad, Sofyan (3)
  • Aram, Farshid (3)
  • Brighenti, Roberto (3)
  • Cesar de Sa, J.M. (3)
  • Chau, Kwok-Wing (3)
  • Chen, Lei (3)
  • De Roeck, G. (3)
  • Ghorashi, Seyed Shahram (3)
  • Gong, Yadong (3)
  • Hoffmeister, B. (3)
  • Jadhav, Kirti (3)
  • Janizadeh, Saeid (3)
  • Kaltenbacher, Barbara (3)
  • Kaltenbacher, Manfred (3)
  • Liu, G.R. (3)
  • Lu, Lixin (3)
  • Morgenthal, Guido (3)
  • Mortazavi, Bohayra (3)
  • Msekh, Mohammed Abdulrazzak (3)
  • Phung-Van, P. (3)
  • Rafiee, Roham (3)
  • Rauert, T. (3)
  • Ribeiro, D. (3)
  • Saadatfar, Hamid (3)
  • Samadianfard, Saeed (3)
  • Samaniego, Esteban (3)
  • Schorling, York (3)
  • Shamshirband, Shahab (3)
  • Thai, Chien H. (3)
  • Valizadeh, N. (3)
  • Wang, Bing-Shen (3)
  • Zhang, Chao (3)
  • Zhao, Jiyun (3)
  • Ziaei-Rad, S. (3)
  • Abbas, Tajammal (2)
  • Achenbach, Marcus (2)
  • Ahmadi, Mohammad Hossein (2)
  • Alizamir, Meysam (2)
  • Amani, Jafar (2)
  • Amiri, Fatemeh (2)
  • Anitescu, C. (2)
  • Baghban, Alireza (2)
  • Bagherzadeh, Amir Saboor (2)
  • Bakar, I. (2)
  • Bazilevs, Yuri (2)
  • Beex, L.A.A. (2)
  • Bergmann, Joachim W. (2)
  • Bock, Sebastian (2)
  • Chandra Pal, Subodh (2)
  • Chau, Kwok-wing (2)
  • Deckner, T. (2)
  • Dehghani, Majid (2)
  • Faizollahzadeh Ardabili, Sina (2)
  • Felde, Imre (2)
  • GhasemiGol, Mohammad (2)
  • Gracie, Robert (2)
  • Hassannataj Joloudari, Javad (2)
  • Hildebrand, Jörg (2)
  • Huang, Runqiu (2)
  • Ilyani Akmar, A.B. (2)
  • Jamshidian, M. (2)
  • Karimimoshaver, Mehrdad (2)
  • Keitel, Holger (2)
  • Kessel, Marco (2)
  • Knabe, Tina (2)
  • Kramer, O. (2)
  • Kumar, Ravinder (2)
  • Kumari, Vandana (2)
  • Le-Van, C. (2)
  • Lerch, Reinhard (2)
  • Mabrouki, Tarek (2)
  • Mohammad, Kifaytullah (2)
  • Mohammadzadeh, Ardashir (2)
  • Nabipur, Narjes (2)
  • Nadai, Laszlo (2)
  • Nasser, Mourad (2)
  • Purkert, G. (2)
  • Qasem, Sultan Noman (2)
  • Queiros de Melo, F. J. M. (2)
  • Radmard Rahmani, Hamid (2)
  • Rasulzade, Shahla (2)
  • Roos, Dirk (2)
  • Saboor Bagherzadeh, Amir (2)
  • Sadeghzadeh, Milad (2)
  • Savaidis, A. (2)
  • Simpson, R. (2)
  • Song, Jeong-Hoon (2)
  • Stoimenova, Eugenia (2)
  • Tan, Fengjie (2)
  • Teughels, A. (2)
  • Thai-Hoang, C. (2)
  • Thumser, Rayk (2)
  • Wang, Cuixia (2)
  • Wang, L. (2)
  • Wuttke, Frank (2)
  • Yang, Shih-Wei (2)
  • Zhang, Yongjie (2)
  • Abbaspour-Gilandeh, Yousef (1)
  • Abeltshauser, Rainer (1)
  • Abu Bakar, Ilyani Akmar (1)
  • Aghakouchaki Hosseini, Seyed Ehsan (1)
  • Ahmadi, Mohammad H. (1)
  • Ahmed Khan Ghayyur, Shahbaz (1)
  • Alalade, Muyiwa (1)
  • Albes, J.M. (1)
  • Almasi, Ashkan (1)
  • Almomani, Thakir (1)
  • Aloraier, Abdulkareem S. (1)
  • Amar, Menad Nait (1)
  • Amirinasab, Mehdi (1)
  • Andersch, C. (1)
  • Andersen, Pål Østebø (1)
  • Arash, Behrouz (1)
  • Arnold, Daniel (1)
  • Arroyo, M. (1)
  • Askes, H. (1)
  • Aydın, Mehmet Cihan (1)
  • Azadi Kakavand, M. R. (1)
  • Azhari, T. (1)
  • Babanezhad, Meisam (1)
  • Banihani, Suleiman (1)
  • Barbosa, J.I. (1)
  • Bayer, Veit (1)
  • Ben Seghier, Mohamed El Amine (1)
  • Ben, S. (1)
  • Bleiziffer, J. (1)
  • Bletzinger, Kai-Uwe (1)
  • Bocchiola, Daniele (1)
  • Bolt, H. (1)
  • Bolzern, P. (1)
  • Bruhin, R. (1)
  • Buddhiraju, Sreekanth (1)
  • Büyüksaraç, Aydın (1)
  • Calçada, R. (1)
  • Camanho, P.P. (1)
  • Cerdà, Artemi (1)
  • Chakrabortty, Rabbin (1)
  • Chakraborty, S. (1)
  • Chan, Chiu Ling (1)
  • Chau-Dinh, T. (1)
  • Chowdhuri, Indrajit (1)
  • Chronopoulos, Anthony Theodore (1)
  • Colaneri, P. (1)
  • Cotecchia, F. (1)
  • Cuniberti, G. (1)
  • Darvishi, Hossein Hassanpour (1)
  • De Lorenzis, Laura (1)
  • De Nicolao, G. (1)
  • Delgado, R. (1)
  • Drücker, J.-P. (1)
  • Duflot, Marc (1)
  • Esmaeilbeiki, Fatemeh (1)
  • Fan, Z. (1)
  • Faridmehr, Iman (1)
  • Faroughi, Maryam (1)
  • Fathi, Sadegh (1)
  • Feitzelmayer, K. (1)
  • Ferreira, A.J.M. (1)
  • Fontaine, Michaël (1)
  • Frangopol, D.M. (1)
  • Frantík, P. (1)
  • Gall, K. (1)
  • Galligo, A. (1)
  • Garcao, J.E. (1)
  • Geng, X. (1)
  • Ghamisi, Pedram (1)
  • Ghani, Anwar (1)
  • Ghazvinei, Pezhman Taherei (1)
  • Ghazvini, Mahyar (1)
  • Ghorbani, Mohammad Ali (1)
  • Ghriga, Mohammed Abdelfetah (1)
  • Gonzalez-Estrada, O.A. (1)
  • Goury, O. (1)
  • Göbel, Luise (1)
  • Gürlebeck, Klaus (1)
  • Hajivaliei, Hatameh (1)
  • Hajnal, Eva (1)
  • Hamdia, K. (1)
  • Hamdia, Khader M. (1)
  • Hamouda, A.M.S. (1)
  • Hao, Xiao-Li (1)
  • Hassannataj Joloudari, Edris (1)
  • Hatahet, Tareq (1)
  • Hauck, A. (1)
  • He, B. (1)
  • He, Pengfei (1)
  • Herrmann, Annemarie (1)
  • Herz, E. (1)
  • Heuler, P. (1)
  • Hintze, D. (1)
  • Ho-Huu, V. (1)
  • Hofmann, Markus (1)
  • Hofstetter, G. (1)
  • Homaei, Mohammad Hossein (1)
  • Hossain, Md Naim (1)
  • Hossein Nezhad Shirazi, Ali (1)
  • Hosseini, Amir Hossein (1)
  • Ilg, J. (1)
  • Ishii, H. (1)
  • Itam, Zarina (1)
  • Işık, Ercan (1)
  • Jaouadi, Zouhour (1)
  • Jilte, Ravindra (1)
  • Joloudari, Javad Hassannataj (1)
  • Jorge, R.N. (1)
  • Joshi, Suraj (1)
  • Kalamkar, Vilas (1)
  • Karaki, Ghada (1)
  • Kargar, Katayoun (1)
  • Kavrakov, Igor (1)
  • Keßler, Andrea (1)
  • Khadang, Amirhosein (1)
  • Khalesro, Shakila (1)
  • Khan, Imran (1)
  • Khosravani, M.R. (1)
  • Khosravi, Samiyeh (1)
  • Khosrobeigi Bozchaloei, Saeid (1)
  • Kiendl, J. (1)
  • Kirichuk, A. (1)
  • Kmet, Tibor (1)
  • Kou, Liangzhi (1)
  • Kumar, S. (1)
  • Lam-Phat, T. (1)
  • Le, C.V. (1)
  • Le, P. (1)
  • Le, T.H. (1)
  • Leach, A. (1)
  • Leder, Erich (1)
  • Lee, C.K. (1)
  • Lee, P.S. (1)
  • Lehký, D. (1)
  • Lengnick, M. (1)
  • Levent Ekinci, Yunus (1)
  • Liang, C. (1)
  • Liang, Chao (1)
  • Limbert, Georges (1)
  • Liu, K. (1)
  • Luu, M. (1)
  • Maddah, Heydar (1)
  • Mahapatra, D.R. (1)
  • Mai, Luu (1)
  • Mansor, Zulkefli (1)
  • Martinez-Rodrigo, M.D. (1)
  • Marzban, Samira (1)
  • Melesse, Assefa M. (1)
  • Meng, Yinghui (1)
  • Milani, Abbas S. (1)
  • Millán, D. (1)
  • Mishra, B.K. (1)
  • Mohammadi Sheshkal, Faezeh (1)
  • Mohammadi, S. (1)
  • Mohammadi-Khanaposhtani, Mohammad (1)
  • Mohebbi, Farzad (1)
  • Mohr, Marcus (1)
  • Molaee, Amir (1)
  • Mourrain, B. (1)
  • Mousavi, Seyed Nasrollah (1)
  • Mukherjee, Kaustuv (1)
  • Mädler, K. (1)
  • Najaf, Bahman (1)
  • Najafi, Bahman (1)
  • Narayana, T.S.S. (1)
  • Nariman, Nazim (1)
  • Neyshabouri, Mohammadreza (1)
  • Nguyen, Hiep Vinh (1)
  • Nguyen, Manh Hung (1)
  • Nguyen, V.P. (1)
  • Nguyen-Vinh, H. (1)
  • Nickerson, Seth (1)
  • Noman Qasem, Sultan (1)
  • Norouzi, Akbar (1)
  • Novák, D. (1)
  • Osburg, Andrea (1)
  • Ouaer, Hocine (1)
  • Oucif, Chahmi (1)
  • Parsa, Javad (1)
  • Pereira, Luiz Felipe C. (1)
  • Petryna, Y. (1)
  • Pfuff, M. (1)
  • Phan-Dao, H. (1)
  • Pinter, Gergo (1)
  • Pinto da Costa, A. (1)
  • Piresh, E.B. (1)
  • Rabizadeh, E. (1)
  • Rabizadeh, Ehsan (1)
  • Raj Das, Rohan (1)
  • Rammohan, B. (1)
  • Razavi, Seyyed Mohammad (1)
  • Reuter, Markus (1)
  • Reynders, E. (1)
  • Rezakazemi, Mashallah (1)
  • Riedel, J. (1)
  • Sabzi, Sajad (1)
  • Saha, Asish (1)
  • Saha, Sunil (1)
  • Sajadzadeh, Hassan (1)
  • Salavati, Mohammad (1)
  • Salehi, Somayeh (1)
  • Samaniego, C. (1)
  • Saqlai, Syed Muhammad (1)
  • Sargado, M. (1)
  • Sattari, Mohammad Taghi (1)
  • Schemmann, Christoph (1)
  • Schmidt, K.H. (1)
  • Schmidt, K.M. (1)
  • Schulz, V. (1)
  • Shabani, Sevda (1)
  • Shen, Y. (1)
  • Shirazi, A. H. N. (1)
  • Shirazian, Saeed (1)
  • Siabi, Zhaleh (1)
  • Siddappa, Manju Gyaraganahalll (1)
  • Singh, I. (1)
  • Singh, Ripudaman (1)
  • Soleimani, Faezeh (1)
  • Solgi, Ebrahim (1)
  • Stein, Peter (1)
  • Steinke Júnior, Renato (1)
  • Stock, U.A. (1)
  • Tahir, Mamood Md. (1)
  • Teixeira, Eder Daniel (1)
  • Thangavel, M. (1)
  • Theiler, Michael (1)
  • Tinh Quoc, Bui (1)
  • Trabert, Josef (1)
  • Tran, T. (1)
  • Trevelyan, J. (1)
  • Tserpes, Konstantinos I. (1)
  • Udrea, Mihai-Andrei (1)
  • Varkonyi-Koczy, Annamaria R. (1)
  • Vogel, Frank (1)
  • Vollmering, Max (1)
  • Vu, Bac Nam (1)
  • Várkonyi-Kóczy, Annamária R. (1)
  • Wahlers, T. (1)
  • Wang, Cui-Xia (1)
  • Wang, Z. (1)
  • Will, Johannes (1)
  • Winkel, B. (1)
  • Winkel, Benjamin (1)
  • Wippermann, J. (1)
  • Wüchner, R. (1)
  • Xu, G. (1)
  • Yusof, Khamaruzaman bin Wan (1)
  • ZHANG, CHAO (1)
  • Zafar, Usman (1)
  • Zamen, Mohammad (1)
  • Zarehaghi, Davoud (1)
  • Zeng, K.Y. (1)
  • Zerbst, U. (1)
  • Zhang, Zhiliang (1)
  • Zhou, K. (1)
- less

Institute

  • Institut für Strukturmechanik (414) (remove)

Keywords

  • Angewandte Mathematik (304)
  • Strukturmechanik (295)
  • Stochastik (40)
  • Computerunterstütztes Verfahren (22)
  • Maschinelles Lernen (19)
  • Architektur <Informatik> (17)
  • Finite-Elemente-Methode (14)
  • Machine learning (13)
  • Angewandte Informatik (12)
  • CAD (10)
  • machine learning (8)
  • Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing (7)
  • Erdbeben (7)
  • Optimierung (6)
  • Wärmeleitfähigkeit (6)
  • Deep learning (5)
  • big data (5)
  • Building Information Modeling (4)
  • Modellierung (4)
  • finite element method (4)
  • rapid visual screening (4)
  • Batterie (3)
  • Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications (3)
  • Mehrskalenmodell (3)
  • Neuronales Netz (3)
  • Simulation (3)
  • earthquake (3)
  • earthquake safety assessment (3)
  • random forest (3)
  • support vector machine (3)
  • Abaqus (2)
  • Artificial neural network (2)
  • Beton (2)
  • Biodiesel (2)
  • Bridges (2)
  • Dynamik (2)
  • FEM (2)
  • Fluid (2)
  • Fotovoltaik (2)
  • Fracture mechanics (2)
  • Fuzzy-Logik (2)
  • Intelligente Stadt (2)
  • Internet of things (2)
  • Isogeometric Analysis (2)
  • Isogeometrische Analyse (2)
  • Künstliche Intelligenz (2)
  • Mechanische Eigenschaft (2)
  • Mehrgitterverfahren (2)
  • Mehrskalenanalyse (2)
  • Modalanalyse (2)
  • Multiscale modeling (2)
  • NURBS (2)
  • Nanostrukturiertes Material (2)
  • Nichtlineare Finite-Elemente-Methode (2)
  • Optimization (2)
  • Polymere (2)
  • Staumauer (2)
  • Strukturdynamik (2)
  • Unsicherheit (2)
  • artificial intelligence (2)
  • artificial neural networks (2)
  • buildings (2)
  • clustering (2)
  • continuum mechanics (2)
  • damaged buildings (2)
  • data science (2)
  • extreme learning machine (2)
  • mathematical modeling (2)
  • multiphase (2)
  • optimization (2)
  • reinforcement learning (2)
  • smart cities (2)
  • soft computing techniques (2)
  • urban morphology (2)
  • vulnerability assessment (2)
  • wireless sensor networks (2)
  • 2D/3D Adaptive Mesh Refinement (1)
  • ANN modeling (1)
  • Adaptives Verfahren (1)
  • Aerodynamic Stability (1)
  • Aerodynamic derivatives (1)
  • Aerodynamik (1)
  • Akkumulator (1)
  • Algorithmus (1)
  • Artificial Intelligence (1)
  • Autogenous (1)
  • Autonomous (1)
  • B-Spline (1)
  • B-Spline Finite Elemente (1)
  • B-spline (1)
  • Battery (1)
  • Battery development (1)
  • Bayes (1)
  • Bayes neuronale Netze (1)
  • Bayes-Verfahren (1)
  • Bayesian method (1)
  • Bayesian neural networks (1)
  • Beam-to-column connection; semi-rigid; flush end-plate connection; moment-rotation curve (1)
  • Berechnung (1)
  • Beschleunigungsmessung (1)
  • Beschädigung (1)
  • Bildanalyse (1)
  • Biomechanics (1)
  • Biomechanik (1)
  • Bodentemperatur (1)
  • Bornitrid (1)
  • Bridge (1)
  • Bridge aerodynamics (1)
  • Bruch (1)
  • Bruchmechanik (1)
  • Brustkorb (1)
  • Brücke (1)
  • Brückenbau (1)
  • Bubble column reactor (1)
  • CFD (1)
  • Carbon nanotubes (1)
  • Chirurgie (1)
  • Computersimulation (1)
  • Concrete (1)
  • ContikiMAC (1)
  • Continuous-Time Markov Chain (1)
  • Control system (1)
  • Cost-Benefit Analysis (1)
  • Damage (1)
  • Damage identification (1)
  • Damping (1)
  • Dams (1)
  • Data, information and knowledge modeling in civil engineering (1)
  • Deal ii C++ code (1)
  • Diskontinuumsmechanik (1)
  • Diskrete-Elemente-Methode (1)
  • Dissertation (1)
  • Druckluft (1)
  • ELM (1)
  • Earthquake (1)
  • Elastizität (1)
  • Electrochemical properties (1)
  • Elektrochemische Eigenschaft (1)
  • Elektrode (1)
  • Elektrodenmaterial (1)
  • Energieeffizienz (1)
  • Energiespeichersystem (1)
  • Energiespeicherung (1)
  • Erdbebensicherheit (1)
  • Erneuerbare Energien (1)
  • Fehlerabschätzung (1)
  • Fernerkung (1)
  • Festkörpermechanik (1)
  • Feststoff (1)
  • Fiber Reinforced Composite (1)
  • Finite Element Method (1)
  • Finite Element Model (1)
  • Flattern (1)
  • Flexoelectricity (1)
  • Fluid-Structure Interaction (1)
  • Flutter (1)
  • Fracture (1)
  • Full waveform inversion (1)
  • Function theoretic methods and PDE in engineering sciences (1)
  • Funktechnik (1)
  • Fuzzy Logic (1)
  • Fuzzy-Regelung (1)
  • Gaussian process regression (1)
  • Gebäude (1)
  • Geoinformatik (1)
  • Geometric Modeling (1)
  • Geometrie (1)
  • Geometry Independent Field Approximation (1)
  • Gesundheitsinformationssystem (1)
  • Gesundheitswesen (1)
  • Gewebeverbundwerkstoff (1)
  • Goal-oriented A Posteriori Error Estimation (1)
  • Graphen (1)
  • Grundwasser (1)
  • Größenverhältnis (1)
  • HPC (1)
  • Healing (1)
  • High-speed railway bridge (1)
  • Hochbau (1)
  • Homogenisieren (1)
  • Homogenisierung (1)
  • Homogenization (1)
  • Hydrological drought (1)
  • IOT (1)
  • Incompressibility (1)
  • Infrastructures (1)
  • Ingenieurwissenschaften (1)
  • Instandhaltung (1)
  • Internet der Dinge (1)
  • Internet der dinge (1)
  • Internet of Things (1)
  • Inverse analysis (1)
  • Inverse problems (1)
  • Isogeometrc Analysis (1)
  • K-nearest neighbors (1)
  • KNN (1)
  • Kaverne (1)
  • Keramik (1)
  • Kirchoff--love theory (1)
  • Klüftung (1)
  • Kohlenstoff Nanoröhre (1)
  • Konjugierte-Gradienten-Methode (1)
  • Kontinuierliche Simul (1)
  • Kontinuumsmechanik (1)
  • Kosten-Nutzen-Analyse (1)
  • Körper (1)
  • Kühlkörper (1)
  • Land surface temperature (1)
  • Local maximum entropy approximants (1)
  • Lufttemperatur (1)
  • Lösungsverfahren (1)
  • M5 model tree (1)
  • MDLSM method (1)
  • Machine Learning (1)
  • Markov-Kette mit stetiger Zeit (1)
  • Marmara Region (1)
  • Maschinenbau (1)
  • Mass Tuned Damper (1)
  • Material (1)
  • Materialversagen (1)
  • Mathematical methods for (robotics and) computer vision (1)
  • Mechanical properties (1)
  • Mechanik (1)
  • Membrane contactors (1)
  • Mensch (1)
  • Mesh Refinement (1)
  • Meso-Scale (1)
  • Messtechnik (1)
  • Mikro-Scale (1)
  • Model assessment (1)
  • Modellbildung (1)
  • Modellkalibrierung (1)
  • Modezuordung (1)
  • Molecular Liquids (1)
  • Monte-Carlo-Integration (1)
  • Monte-Carlo-Simulation (1)
  • Morphologie (1)
  • Motion-induced forces (1)
  • Multi-criteria decision making (1)
  • Multi-objective Evolutionary Optimization, Elitist Non- Dominated Sorting Evolution Strategy (ENSES), Sandwich Structure, Pareto-Optimal Solutions, Evolutionary Algorithm (1)
  • Multi-scale modeling (1)
  • Muscle model (1)
  • Muskel (1)
  • Nachhaltigkeit (1)
  • Nanocomposite materials (1)
  • Nanofluid (1)
  • Nanomaterial (1)
  • Nanomaterials (1)
  • Nanomechanical Resonators (1)
  • Nanomechanik (1)
  • Nanoribbons, thermal conductivity (1)
  • Nanostructures (1)
  • Nanoverbundstruktur (1)
  • Nasskühlung (1)
  • Naturkatastrophe (1)
  • Nitratbelastung (1)
  • Numerical modeling in engineering (1)
  • Numerische Berechnung (1)
  • Numerische Mathematik (1)
  • Oberflächentemperatur (1)
  • Operante Konditionierung (1)
  • Operational modal analysis (1)
  • Optimization in engineering applications (1)
  • Optimization problems (1)
  • PU Enrichment method (1)
  • Parameteridentification (1)
  • Passive damper (1)
  • Phase field model (1)
  • Phase-field model (1)
  • Phase-field modeling (1)
  • Physikalische Eigenschaft (1)
  • Piezoelectricity (1)
  • Polykristall (1)
  • Polymer nanocomposites (1)
  • Polymers (1)
  • Polynomial Splines over Hierarchical T-meshes (1)
  • Railway bridges (1)
  • Rapid Visual Screening (1)
  • Recovery Based Error Estimator (1)
  • Referenzfläche (1)
  • Rehabilitation (1)
  • Reliability Analysis (1)
  • Reliability Theory (1)
  • Renewable energy (1)
  • Resonator (1)
  • Riss (1)
  • Rissausbreitung (1)
  • Schaden (1)
  • Schadensdetektionsverfahren (1)
  • Schadensmechanik (1)
  • Schubspannung (1)
  • Schwingung (1)
  • Schwingungsanalyse (1)
  • Schwingungsdämpfer (1)
  • Schädigung (1)
  • Schätztheorie (1)
  • Selbstheilung (1)
  • Semi-active damper (1)
  • Sensitivity (1)
  • Sensitivitätsanalyse (1)
  • Sensor (1)
  • Simulationsprozess (1)
  • Solar (1)
  • Stabilität (1)
  • Stahlbau (1)
  • Standsicherheit (1)
  • Staudamm (1)
  • Steifigkeit (1)
  • Stochastic Subspace Identification (1)
  • Stochastic analysis (1)
  • Strukturoptimierung (1)
  • Strömungsmechanik (1)
  • Stütze (1)
  • Super Healing (1)
  • Surface effects (1)
  • Sustainability (1)
  • Sustainable production (1)
  • System Identification (1)
  • Systemidentifikation (1)
  • Talsperre (1)
  • Thermal Fluid-Structure Interaction (1)
  • Thermal conductivity (1)
  • Thermoelasticity (1)
  • Thermoelastizität (1)
  • Thin shell (1)
  • Thorax (1)
  • Tragfähigkeit (1)
  • Träger (1)
  • Uncertainty (1)
  • Uncertainty analysis (1)
  • Verbundwerkstoff (1)
  • Vernetzung (1)
  • Vortex Induced Vibration (1)
  • Vulnerability (1)
  • Vulnerability assessment (1)
  • Wasserbau (1)
  • Wave propagation (1)
  • Wechselwirkung (1)
  • Werkstoff (1)
  • Wind Energy (1)
  • Wind Turbines (1)
  • Windenergie (1)
  • Windturbine (1)
  • XFEM (1)
  • Zementbeton (1)
  • Zustandsraummodell (1)
  • Zuverlässigkeitsanalyse (1)
  • Zuverlässigkeitstheorie (1)
  • action recognition (1)
  • adaptive neuro-fuzzy inference system (ANFIS) (1)
  • adaptive pushover (1)
  • adaptive simulation (1)
  • ant colony optimization algorithm (ACO) (1)
  • artificial neural network (1)
  • atomistic simulation methods (1)
  • automatic modal analysis (1)
  • back-pressure (1)
  • battery (1)
  • biodiesel (1)
  • buckling (1)
  • building information modelling (1)
  • ceramics (1)
  • classification (1)
  • classifier (1)
  • clear channel assessments (1)
  • cluster density (1)
  • cluster shape (1)
  • composite (1)
  • computation (1)
  • computational fluid dynamics (CFD) (1)
  • concrete (1)
  • congestion control (1)
  • conjugate gradient method (1)
  • continuum damage mechanics (1)
  • coronary artery disease (1)
  • crack (1)
  • crack identification (1)
  • cylindrical shell structures (1)
  • damage (1)
  • dams (1)
  • deep learning neural network (1)
  • diesel engines (1)
  • dimensionality reduction (1)
  • diskontinuum mechanics (1)
  • dissimilarity measures (1)
  • domain decomposition (1)
  • duty-cycles (1)
  • earthquake damage (1)
  • earthquake vulnerability assessment (1)
  • effective properties (1)
  • energy consumption (1)
  • energy efficiency (1)
  • energy, exergy (1)
  • ensemble model (1)
  • estimation (1)
  • extreme events (1)
  • extreme pressure (1)
  • finite element (1)
  • firefly optimization algorithm (1)
  • flow pattern (1)
  • fog computing (1)
  • food informatics (1)
  • fractional-order control (1)
  • fuzzy decision making (1)
  • genetic algorithm (1)
  • geoinformatics (1)
  • grid-based (1)
  • ground water contamination (1)
  • growth mode (1)
  • gully erosion susceptibility (1)
  • health (1)
  • health informatics (1)
  • heart disease diagnosis (1)
  • heat sink (1)
  • heterogeneous material (1)
  • high-performance computing (1)
  • human blob (1)
  • human body proportions (1)
  • hybrid machine learning (1)
  • hybrid machine learning model (1)
  • hydraulic jump (1)
  • hydrological model (1)
  • hydrology (1)
  • image processing (1)
  • industry 4.0 (1)
  • intergranular damage (1)
  • isogeometric analysis (1)
  • isogeometric methods (1)
  • jointed rock (1)
  • least square support vector machine (LSSVM) (1)
  • level set method (1)
  • longitudinal dispersion coefficient (1)
  • material failure (1)
  • matrix-free (1)
  • mehrphasig (1)
  • mitigation (1)
  • modal analysis (1)
  • modal parameter estimation (1)
  • modal tracking (1)
  • mode pairing (1)
  • model updating (1)
  • mortar method (1)
  • multigrid (1)
  • multigrid method (1)
  • multiscale (1)
  • multiscale method (1)
  • nanocomposite (1)
  • nanofluid (1)
  • nanoreinforced composites (1)
  • natural hazard (1)
  • neural networks (NNs) (1)
  • optimal sensor positions (1)
  • optimale Sensorpositionierung (1)
  • parameter identification (1)
  • partical swarm optimization (1)
  • passive control (1)
  • photovoltaic (1)
  • photovoltaic-thermal (PV/T) (1)
  • physical activities (1)
  • precipitation (1)
  • prediction (1)
  • predictive model (1)
  • principal component analysis (1)
  • public health (1)
  • public space (1)
  • quasicontinuum method (1)
  • received signal strength indicator (RSSI) (1)
  • recovery-based and residual-based error estimators (1)
  • remote sensing (1)
  • residential buildings (1)
  • response surface methodology (1)
  • rice (1)
  • rivers (1)
  • rule based classification (1)
  • scalable smeared crack analysis (1)
  • scale transition (1)
  • seasonal precipitation (1)
  • seismic assessment (1)
  • seismic control (1)
  • seismic hazard analysis (1)
  • seismic risk estimation (1)
  • seismic vulnerability (1)
  • signal processing (1)
  • site-specific spectrum (1)
  • smart sensors (1)
  • soil temperature (1)
  • solver (1)
  • spatial analysis (1)
  • spatiotemporal database (1)
  • spearman correlation coefficient (1)
  • square root cubature calman filter (1)
  • standard deviation of pressure fluctuations (1)
  • statistical analysis (1)
  • statistical coeffcient of the probability distribution (1)
  • stilling basin (1)
  • stochastic (1)
  • stochastic subspace identification (1)
  • structural control (1)
  • structural dynamics (1)
  • sugarcane (1)
  • support vector regression (1)
  • sustainability (1)
  • tall buildings (1)
  • thermal conductivity (1)
  • tuned mass damper (1)
  • tuned mass dampers (1)
  • type-3 fuzzy systems (1)
  • urban health (1)
  • urban sustainability (1)
  • water quality (1)
  • wavelet transform (1)
  • wireless sensor network (1)
  • woven composites (1)
- less

Year of publication

  • 2014 (43)
  • 2020 (42)
  • 2015 (40)
  • 2013 (33)
  • 2006 (32)
  • 2010 (20)
  • 2005 (19)
  • 2007 (19)
  • 2008 (18)
  • 2012 (18)
+ more

414 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths (2020)
Mosavi, Amir ; Shamshirband, Shahaboddin ; Esmaeilbeiki, Fatemeh ; Zarehaghi, Davoud ; Neyshabouri, Mohammadreza ; Samadianfard, Saeed ; Ghorbani, Mohammad Ali ; Nabipour, Narjes ; Chau, Kwok-Wing
This research aims to model soil temperature (ST) using machine learning models of multilayer perceptron (MLP) algorithm and support vector machine (SVM) in hybrid form with the Firefly optimization algorithm, i.e. MLP-FFA and SVM-FFA. In the current study, measured ST and meteorological parameters of Tabriz and Ahar weather stations in a period of 2013–2015 are used for training and testing of the studied models with one and two days as a delay. To ascertain conclusive results for validation of the proposed hybrid models, the error metrics are benchmarked in an independent testing period. Moreover, Taylor diagrams utilized for that purpose. Obtained results showed that, in a case of one day delay, except in predicting ST at 5 cm below the soil surface (ST5cm) at Tabriz station, MLP-FFA produced superior results compared with MLP, SVM, and SVM-FFA models. However, for two days delay, MLP-FFA indicated increased accuracy in predicting ST5cm and ST 20cm of Tabriz station and ST10cm of Ahar station in comparison with SVM-FFA. Additionally, for all of the prescribed models, the performance of the MLP-FFA and SVM-FFA hybrid models in the testing phase was found to be meaningfully superior to the classical MLP and SVM models.
Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model (2020)
Hassannataj Joloudari, Javad ; Hassannataj Joloudari, Edris ; Saadatfar, Hamid ; GhasemiGol, Mohammad ; Razavi, Seyyed Mohammad ; Mosavi, Amir ; Nabipour, Narjes ; Shamshirband, Shahaboddin ; Nadai, Laszlo
Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.
Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms (2020)
Kargar, Katayoun ; Samadianfard, Saeed ; Parsa, Javad ; Nabipour, Narjes ; Shamshirband, Shahaboddin ; Mosavi, Amir ; Chau, Kwok-wing
The longitudinal dispersion coefficient (LDC) plays an important role in modeling the transport of pollutants and sediment in natural rivers. As a result of transportation processes, the concentration of pollutants changes along the river. Various studies have been conducted to provide simple equations for estimating LDC. In this study, machine learning methods, namely support vector regression, Gaussian process regression, M5 model tree (M5P) and random forest, and multiple linear regression were examined in predicting the LDC in natural streams. Data sets from 60 rivers around the world with different hydraulic and geometric features were gathered to develop models for LDC estimation. Statistical criteria, including correlation coefficient (CC), root mean squared error (RMSE) and mean absolute error (MAE), were used to scrutinize the models. The LDC values estimated by these models were compared with the corresponding results of common empirical models. The Taylor chart was used to evaluate the models and the results showed that among the machine learning models, M5P had superior performance, with CC of 0.823, RMSE of 454.9 and MAE of 380.9. The model of Sahay and Dutta, with CC of 0.795, RMSE of 460.7 and MAE of 306.1, gave more precise results than the other empirical models. The main advantage of M5P models is their ability to provide practical formulae. In conclusion, the results proved that the developed M5P model with simple formulations was superior to other machine learning models and empirical models; therefore, it can be used as a proper tool for estimating the LDC in rivers.
Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices (2020)
Dehghani, Majid ; Salehi, Somayeh ; Mosavi, Amir ; Nabipour, Narjes ; Shamshirband, Shahaboddin ; Ghamisi, Pedram
Temporary changes in precipitation may lead to sustained and severe drought or massive floods in different parts of the world. Knowing the variation in precipitation can effectively help the water resources decision-makers in water resources management. Large-scale circulation drivers have a considerable impact on precipitation in different parts of the world. In this research, the impact of El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO) on seasonal precipitation over Iran was investigated. For this purpose, 103 synoptic stations with at least 30 years of data were utilized. The Spearman correlation coefficient between the indices in the previous 12 months with seasonal precipitation was calculated, and the meaningful correlations were extracted. Then, the month in which each of these indices has the highest correlation with seasonal precipitation was determined. Finally, the overall amount of increase or decrease in seasonal precipitation due to each of these indices was calculated. Results indicate the Southern Oscillation Index (SOI), NAO, and PDO have the most impact on seasonal precipitation, respectively. Additionally, these indices have the highest impact on the precipitation in winter, autumn, spring, and summer, respectively. SOI has a diverse impact on winter precipitation compared to the PDO and NAO, while in the other seasons, each index has its special impact on seasonal precipitation. Generally, all indices in different phases may decrease the seasonal precipitation up to 100%. However, the seasonal precipitation may increase more than 100% in different seasons due to the impact of these indices. The results of this study can be used effectively in water resources management and especially in dam operation.
Energy‐Efficient Method for Wireless Sensor Networks Low‐Power Radio Operation in Internet of Things (2020)
Amirinasab, Mehdi ; Shamshirband, Shahaboddin ; Chronopoulos, Anthony Theodore ; Mosavi, Amir ; Nabipour, Narjes
The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT)applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low‐power radio duty‐cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW‐CCA) as an extension to ContikiMAC to reduce the Radio Duty‐Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW‐CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR).
Multi-Scale Modeling of Lithium ion Batteries: a thermal management approach and molecular dynamic studies (2020)
Hossein Nezhad Shirazi, Ali
Rechargeable lithium ion batteries (LIBs) play a very significant role in power supply and storage. In recent decades, LIBs have caught tremendous attention in mobile communication, portable electronics, and electric vehicles. Furthermore, global warming has become a worldwide issue due to the ongoing production of greenhouse gases. It motivates solutions such as renewable sources of energy. Solar and wind energies are the most important ones in renewable energy sources. By technology progress, they will definitely require batteries to store the produced power to make a balance between power generation and consumption. Nowadays,rechargeable batteries such as LIBs are considered as one of the best solutions. They provide high specific energy and high rate performance while their rate of self-discharge is low. Performance of LIBs can be improved through the modification of battery characteristics. The size of solid particles in electrodes can impact the specific energy and the cyclability of batteries. It can improve the amount of lithium content in the electrode which is a vital parameter in capacity and capability of a battery. There exist diferent sources of heat generation in LIBs such as heat produced during electrochemical reactions, internal resistance in battery. The size of electrode's electroactive particles can directly affect the produced heat in battery. It will be shown that the smaller size of solid particle enhance the thermal characteristics of LIBs. Thermal issues such as overheating, temperature maldistribution in the battery, and thermal runaway have confined applications of LIBs. Such thermal challenges reduce the Life cycle of LIBs. As well, they may lead to dangerous conditions such as fire or even explosion in batteries. However, recent advances in fabrication of advanced materials such as graphene and carbon nanotubes with extraordinary thermal conductivity and electrical properties propose new opportunities to enhance their performance. Since experimental works are expensive, our objective is to use computational methods to investigate the thermal issues in LIBS. Dissipation of the heat produced in the battery can improve the cyclability and specific capacity of LIBs. In real applications, packs of LIB consist several battery cells that are used as the power source. Therefore, it is worth to investigate thermal characteristic of battery packs under their cycles of charging/discharging operations at different applied current rates. To remove the produced heat in batteries, they can be surrounded by materials with high thermal conductivity. Parafin wax absorbs high energy since it has a high latent heat. Absorption high amounts of energy occurs at constant temperature without phase change. As well, thermal conductivity of parafin can be magnified with nano-materials such as graphene, CNT, and fullerene to form a nano-composite medium. Improving the thermal conductivity of LIBs increase the heat dissipation from batteries which is a vital issue in systems of battery thermal management. The application of two-dimensional (2D) materials has been on the rise since exfoliation the graphene from bulk graphite. 2D materials are single-layered in an order of nanosizes which show superior thermal, mechanical, and optoelectronic properties. They are potential candidates for energy storage and supply, particularly in lithium ion batteries as electrode material. The high thermal conductivity of graphene and graphene-like materials can play a significant role in thermal management of batteries. However, defects always exist in nano-materials since there is no ideal fabrication process. One of the most important defects in materials are nano-crack which can dramatically weaken the mechanical properties of the materials. Newly synthesized crystalline carbon nitride with the stoichiometry of C3N have attracted many attentions due to its extraordinary mechanical and thermal properties. The other nano-material is phagraphene which shows anisotropic mechanical characteristics which is ideal in production of nanocomposite. It shows ductile fracture behavior when subjected under uniaxial loadings. It is worth to investigate their thermo-mechanical properties in its pristine and defective states. We hope that the findings of our work not only be useful for both experimental and theoretical researches but also help to design advanced electrodes for LIBs.
A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars (2020)
Abbaspour-Gilandeh, Yousef ; Molaee, Amir ; Sabzi, Sajad ; Nabipur, Narjes ; Shamshirband, Shahaboddin ; Mosavi, Amir
Due to the importance of identifying crop cultivars, the advancement of accurate assessment of cultivars is considered essential. The existing methods for identifying rice cultivars are mainly time-consuming, costly, and destructive. Therefore, the development of novel methods is highly beneficial. The aim of the present research is to classify common rice cultivars in Iran based on color, morphologic, and texture properties using artificial intelligence (AI) methods. In doing so, digital images of 13 rice cultivars in Iran in three forms of paddy, brown, and white are analyzed through pre-processing and segmentation of using MATLAB. Ninety-two specificities, including 60 color, 14 morphologic, and 18 texture properties, were identified for each rice cultivar. In the next step, the normal distribution of data was evaluated, and the possibility of observing a significant difference between all specificities of cultivars was studied using variance analysis. In addition, the least significant difference (LSD) test was performed to obtain a more accurate comparison between cultivars. To reduce data dimensions and focus on the most effective components, principal component analysis (PCA) was employed. Accordingly, the accuracy of rice cultivar separations was calculated for paddy, brown rice, and white rice using discriminant analysis (DA), which was 89.2%, 87.7%, and 83.1%, respectively. To identify and classify the desired cultivars, a multilayered perceptron neural network was implemented based on the most effective components. The results showed 100% accuracy of the network in identifying and classifying all mentioned rice cultivars. Hence, it is concluded that the integrated method of image processing and pattern recognition methods, such as statistical classification and artificial neural networks, can be used for identifying and classification of rice cultivars.
Analytical Modeling of Self-Healing and Super Healing in Cementitious Materials (2020)
Oucif, Chahmi
Self-healing materials have recently become more popular due to their capability to autonomously and autogenously repair the damage in cementitious materials. The concept of self-healing gives the damaged material the ability to recover its stiffness. This gives a difference in comparing with a material that is not subjected to healing. Once this material is damaged, it cannot sustain loading due to the stiffness degradation. Numerical modeling of self-healing materials is still in its infancy. Multiple experimental researches were conducted in literature to describe the behavior of self-healing of cementitious materials. However, few numerical investigations were undertaken. The thesis presents an analytical framework of self-healing and super healing materials based on continuum damage-healing mechanics. Through this framework, we aim to describe the recovery and strengthening of material stiffness and strength. A simple damage healing law is proposed and applied on concrete material. The proposed damage-healing law is based on a new time-dependent healing variable. The damage-healing model is applied on isotropic concrete material at the macroscale under tensile load. Both autonomous and autogenous self-healing mechanisms are simulated under different loading conditions. These two mechanisms are denoted in the present work by coupled and uncoupled self-healing mechanisms, respectively. We assume in the coupled self-healing that the healing occurs at the same time with damage evolution, while we assume in the uncoupled self-healing that the healing occurs when the material is deformed and subjected to a rest period (damage is constant). In order to describe both coupled and uncoupled healing mechanisms, a one-dimensional element is subjected to different types of loading history. In the same context, derivation of nonlinear self-healing theory is given, and comparison of linear and nonlinear damage-healing models is carried out using both coupled and uncoupled self-healing mechanisms. The nonlinear healing theory includes generalized nonlinear and quadratic healing models. The healing efficiency is studied by varying the values of the healing rest period and the parameter describing the material characteristics. In addition, theoretical formulation of different self-healing variables is presented for both isotropic and anisotropic maerials. The healing variables are defined based on the recovery in elastic modulus, shear modulus, Poisson's ratio, and bulk modulus. The evolution of the healing variable calculated based on cross-section as function of the healing variable calculated based on elastic stiffness is presented in both hypotheses of elastic strain equivalence and elastic energy equivalence. The components of the fourth-rank healing tensor are also obtained in the case of isotropic elasticity, plane stress and plane strain. Recent research revealed that self-healing presents a crucial solution also for the strengthening of the materials. This new concept has been termed ``Super Healing``. Once the stiffness of the material is recovered, further healing can result as a strengthening material. In the present thesis, new theory of super healing materials is defined in isotropic and anisotropic cases using sound mathematical and mechanical principles which are applied in linear and nonlinear super healing theories. Additionally, the link of the proposed theory with the theory of undamageable materials is outlined. In order to describe the super healing efficiency in linear and nonlinear theories, the ratio of effective stress to nominal stress is calculated as function of the super healing variable. In addition, the hypotheses of elastic strain and elastic energy equivalence are applied. In the same context, new super healing matrix in plane strain is proposed based on continuum damage-healing mechanics. In the present work, we also focus on numerical modeling of impact behavior of reinforced concrete slabs using the commercial finite element package Abaqus/Explicit. Plain and reinforced concrete slabs of unconfined compressive strength 41 MPa are simulated under impact of ogive-nosed hard projectile. The constitutive material modeling of the concrete and steel reinforcement bars is performed using the Johnson-Holmquist-2 damage and the Johnson-Cook plasticity material models, respectively. Damage diameters and residual velocities obtained by the numerical model are compared with the experimental results and effect of steel reinforcement and projectile diameter is studied.
A Comparative Study of MCDM Methods Integrated with Rapid Visual Seismic Vulnerability Assessment of Existing RC Structures (2020)
Harirchian, Ehsan ; Jadhav, Kirti ; Mohammad, Kifaytullah ; Aghakouchaki Hosseini, Seyed Ehsan ; Lahmer, Tom
Recently, the demand for residence and usage of urban infrastructure has been increased, thereby resulting in the elevation of risk levels of human lives over natural calamities. The occupancy demand has rapidly increased the construction rate, whereas the inadequate design of structures prone to more vulnerability. Buildings constructed before the development of seismic codes have an additional susceptibility to earthquake vibrations. The structural collapse causes an economic loss as well as setbacks for human lives. An application of different theoretical methods to analyze the structural behavior is expensive and time-consuming. Therefore, introducing a rapid vulnerability assessment method to check structural performances is necessary for future developments. The process, as mentioned earlier, is known as Rapid Visual Screening (RVS). This technique has been generated to identify, inventory, and screen structures that are potentially hazardous. Sometimes, poor construction quality does not provide some of the required parameters; in this case, the RVS process turns into a tedious scenario. Hence, to tackle such a situation, multiple-criteria decision-making (MCDM) methods for the seismic vulnerability assessment opens a new gateway. The different parameters required by RVS can be taken in MCDM. MCDM evaluates multiple conflicting criteria in decision making in several fields. This paper has aimed to bridge the gap between RVS and MCDM. Furthermore, to define the correlation between these techniques, implementation of the methodologies from Indian, Turkish, and Federal Emergency Management Agency (FEMA) codes has been done. The effects of seismic vulnerability of structures have been observed and compared.
Image Analysis Using Human Body Geometry and Size Proportion Science for Action Classification (2020)
Saqlai, Syed Muhammad ; Ghani, Anwar ; Khan, Imran ; Ahmed Khan Ghayyur, Shahbaz ; Shamshirband, Shahaboddin ; Nabipour, Narjes ; Shokri, Manouchehr
Gestures are one of the basic modes of human communication and are usually used to represent different actions. Automatic recognition of these actions forms the basis for solving more complex problems like human behavior analysis, video surveillance, event detection, and sign language recognition, etc. Action recognition from images is a challenging task as the key information like temporal data, object trajectory, and optical flow are not available in still images. While measuring the size of different regions of the human body i.e., step size, arms span, length of the arm, forearm, and hand, etc., provides valuable clues for identification of the human actions. In this article, a framework for classification of the human actions is presented where humans are detected and localized through faster region-convolutional neural networks followed by morphological image processing techniques. Furthermore, geometric features from human blob are extracted and incorporated into the classification rules for the six human actions i.e., standing, walking, single-hand side wave, single-hand top wave, both hands side wave, and both hands top wave. The performance of the proposed technique has been evaluated using precision, recall, omission error, and commission error. The proposed technique has been comparatively analyzed in terms of overall accuracy with existing approaches showing that it performs well in contrast to its counterparts.
  • 1 to 10
  • Contact
  • Imprint
  • OAI
  • Sitelinks
  • Login

© KOBV OPUS4 2010-2018