### Refine

#### Document Type

- Conference Proceeding (36)
- Article (14)

#### Institute

#### Keywords

- Angewandte Mathematik (50) (remove)

#### Year of publication

- 2012 (50) (remove)

Many structures in different engineering applications suffer from cracking. In order to make reliable prognosis about the serviceability of those structures it is of utmost importance to identify cracks as precisely as possible by non-destructive testing. A novel approach (XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element Method (XFEM) is used for the forward problem, namely the analysis of a cracked material, see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA together with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the necessity of remeshing during the crack identification problem. We want to exploit these advantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g. [2]. The quality of the reconstructed cracks however depends on two major issues, namely the quality of the measured data (measurement error) and the discretization of the crack model. The first one will be taken into account by applying regularizing methods with a posteriori stopping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the number of control points of the NURBS, do not allow for a precise description of the crack. An increased number of control points, however, increases the number of unknowns in the inverse analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started with short knot vectors which successively will be enlarged during the identification process.

In this paper, wavelet energy damage indicator is used in response surface methodology to identify the damage in simulated filler beam railway bridge. The approximate model is addressed to include the operational and surrounding condition in the assessment. The procedure is split into two stages, the training and detecting phase. During training phase, a so-called response surface is built from training data using polynomial regression and radial basis function approximation approaches. The response surface is used to detect the damage in structure during detection phase. The results show that the response surface model is able to detect moderate damage in one of bridge supports while the temperatures and train velocities are varied.

This paper presents a methodology for uncertainty quantification in cyclic creep analysis. Several models- , namely BP model, Whaley and Neville model, modified MC90 for cyclic loading and modified Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of uncertainty are included in Uncertainty Quantification (UQ): (i) natural variability in loading and materials properties; (ii) data uncertainty due to measurement errors; and (iii) modelling uncertainty and errors during cyclic creep analysis. Due to the consideration of all type of uncertainties, a measure for the total variation of the model response is achieved. The study finds that the BP, modified Hyperbolic and modified MC90 are best performing models for cyclic creep prediction in that order. Further, global Sensitivity Analysis (SA) considering the uncorrelated and correlated parameters is used to quantify the contribution of each source of uncertainty to the overall prediction uncertainty and to identifying the important parameters. The error in determining the input quantities and model itself can produce significant changes in creep prediction values. The variability influence of input random quantities on the cyclic creep was studied by means of the stochastic uncertainty and sensitivity analysis namely the Gartner et al. method and Saltelli et al. method. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the cyclic creep deformation variability is most sensitive to the Elastic modulus of concrete, compressive strength, mean stress, cyclic stress amplitude, number of cycle, in that order.

The aim of our contribution is to clarify the relation between totally regular variables and Appell sequences of hypercomplex holomorphic polynomials (sometimes simply called monogenic power-like functions) in Hypercomplex Function Theory. After their introduction in 2006 by two of the authors of this note on the occasion of the 17th IKM, the latter have been subject of investigations by different authors with different methods and in various contexts. The former concept, introduced by R. Delanghe in 1970 and later also studied by K. Gürlebeck in 1982 for the case of quaternions, has some obvious relationship with the latter, since it describes a set of linear hypercomplex holomorphic functions all power of which are also hypercomplex holomorphic. Due to the non-commutative nature of the underlying Clifford algebra, being totally regular variables or Appell sequences are not trivial properties as it is for the integer powers of the complex variable z=x+ iy. Simple examples show also, that not every totally regular variable and its powers form an Appell sequence and vice versa. Under some very natural normalization condition the set of all para-vector valued totally regular variables which are also Appell sequences will completely be characterized. In some sense the result can also be considered as an answer to a remark of K. Habetha in chapter 16: Function theory in algebras of the collection Complex analysis. Methods, trends, and applications, Akademie-Verlag Berlin, (Eds. E. Lanckau and W. Tutschke) 225-237 (1983) on the use of exact copies of several complex variables for the power series representation of any hypercomplex holomorphic function.

This paper is focused on the first numerical tests for coupling between analytical solution and finite element method on the example of one problem of fracture mechanics. The calculations were done according to ideas proposed in [1]. The analytical solutions are constructed by using an orthogonal basis of holomorphic and anti-holomorphic functions. For coupling with finite element method the special elements are constructed by using the trigonometric interpolation theorem.

THE INFLUENCE OF THE LOCAL CONCAVITY ON THE FUNCTIONING OF BEARING SHELL OF HIGH-RISE CONSTRUCTION
(2012)

Areas with various defects and damages, which reduce carrying capacity, were examined in a study of metal chimneys. In this work, the influence of the local dimples on the function of metal chimneys was considered. Modeling tasks were completed in the software packages LIRA and ANSYS. Parameters were identified, which characterize the local dimples, and a numerical study of the influence of local dimples on the stress-strain state of shells of metal chimneys was conducted. A distribution field of circular and meridional tension was analyzed in a researched area. Zones of influence of dimples on the bearing cover of metal chimneys were investigated. The bearing capacities of high-rise structures with various dimple geometries and various cover parameters were determined with respect to specified areas of the trunk. Dependent relationships are represented graphically for the decrease in bearing capacity of a cover with respect to dimples. Diameter and thickness of covers of metal chimneys were constructed according to the resulting data.

We briefly review and use the recent comprehensive research on the manifolds of square roots of −1 in real Clifford geometric algebras Cl(p,q) in order to construct the Clifford Fourier transform. Basically in the kernel of the complex Fourier transform the complex imaginary unit j is replaced by a square root of −1 in Cl(p,q). The Clifford Fourier transform (CFT) thus obtained generalizes previously known and applied CFTs, which replaced the complex imaginary unit j only by blades (usually pseudoscalars) squaring to −1. A major advantage of real Clifford algebra CFTs is their completely real geometric interpretation. We study (left and right) linearity of the CFT for constant multivector coefficients in Cl(p,q), translation (x-shift) and modulation (w -shift) properties, and signal dilations. We show an inversion theorem. We establish the CFT of vector differentials, partial derivatives, vector derivatives and spatial moments of the signal. We also derive Plancherel and Parseval identities as well as a general convolution theorem.

Non-destructive techniques for damage detection became the focus of engineering interests in the last few years. However, applying these techniques to large complex structures like civil engineering buildings still has some limitations since these types of structures are
unique and the methodologies often need a large number of specimens for reliable results. For this reason, cost and time can greatly influence the final results.
Model Assisted Probability Of Detection (MAPOD) has taken its place among the ranks of damage identification techniques, especially with advances in computer capacity and modeling tools. Nevertheless, the essential condition for a successful MAPOD is having a reliable model in advance. This condition is opening the door for model assessment and model quality problems. In this work, an approach is proposed that uses Partial Models (PM) to compute the Probability Of damage Detection (POD). A simply supported beam, that can be structurally modified and
tested under laboratory conditions, is taken as an example. The study includes both experimental and numerical investigations, the application of vibration-based damage detection approaches and a comparison of the results obtained based on tests and simulations.
Eventually, a proposal for a methodology to assess the reliability and the robustness of the models is given.

Safety operation of important civil structures such as bridges can be estimated by using fracture analysis. Since the analytical methods are not capable of solving many complicated engineering problems, numerical methods have been increasingly adopted. In this paper, a part of isotropic material which contains a crack is considered as a partial model and the proposed model quality is evaluated. EXtended IsoGeometric Analysis (XIGA) is a new developed numerical approach [1, 2] which benefits from advantages of its origins: eXtended Finite Element Method (XFEM) and IsoGeometric Analysis (IGA). It is capable of simulating crack propagation problems with no remeshing necessity and capturing singular field at the crack tip by using the crack tip enrichment functions. Also, exact representation of geometry is possible using only few elements. XIGA has also been successfully applied for fracture analysis of cracked orthotropic bodies [3] and for simulation of curved cracks [4]. XIGA applies NURBS functions for both geometry description and solution field approximation. The drawback of NURBS functions is that local refinement cannot be defined regarding that it is based on tensorproduct constructs unless multiple patches are used which has also some limitations. In this contribution, the XIGA is further developed to make the local refinement feasible by using Tspline basis functions. Adopting a recovery based error estimator in the proposed approach for evaluation of the model quality and performing the adaptive processes is in progress. Finally, some numerical examples with available analytical solutions are investigated by the developed scheme.

This paper presents a robust model updating strategy for system identification of wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sensitivity analysis using the elementary effects method is conducted. The formulation of the objective function is based on M¨uller-Slany’s strategy for multi-criteria functions. As a simulationbased optimization, a simulation adapter is developed to interface the simulation software ANSYS and the locally developed optimization software MOPACK. Model updating is firstly tested on the beam model of the rotor blade. The defect between the numerical model and the reference has been markedly reduced by the process of model updating. The effect of model updating becomes more pronounced in the comparison of the measured and the numerical properties of the wind turbine model. The deviations of the frequencies of the updated model are rather small. The complete comparison including the free vibration modes by the modal assurance criteria shows the excellent coincidence of the modal parameters of the updated model with the ones from the measurements. By successful implementation of the model validation via model updating, the applicability and effectiveness of the solution concept has been demonstrated.