### Refine

#### Document Type

- Doctoral Thesis (3) (remove)

#### Institute

- Institut für Strukturmechanik (3) (remove)

#### Keywords

- Mehrskalenmodell (3) (remove)

This thesis concerns the physical and mechanical interactions on carbon nanotubes and polymers by multiscale modeling. CNTs have attracted considerable interests in view of their unique mechanical, electronic, thermal, optical and structural properties, which enable them to have many potential applications.
Carbon nanotube exists in several structure forms, from individual single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) to carbon nanotube bundles and networks. The mechanical properties of SWCNTs and MWCNTs have been extensively studied by continuum modeling and molecular dynamics (MD) simulations in the past decade since the properties could be important in the CNT-based devices. CNT bundles and networks feature outstanding mechanical performance and hierarchical structures and network topologies, which have been taken as a potential saving-energy material. In the synthesis of nanocomposites, the formation of the CNT bundles and networks is a challenge to remain in understanding how to measure and predict the properties of such large systems. Therefore, a mesoscale method such as a coarse-grained (CG) method should be developed to study the nanomechanical characterization of CNT bundles and networks formation.
In this thesis, the main contributions can be written as follows: (1) Explicit solutions for the cohesive energy between carbon nanotubes, graphene and substrates are obtained through continuum modeling of the van der Waals interaction between them. (2) The CG potentials of SWCNTs are established by a molecular mechanics model. (3) The binding energy between two parallel and crossing SWCNTs and MWCNTs is obtained by continuum modeling of the van der Waals interaction between them. Crystalline and amorphous polymers are increasingly used in modern industry as tructural materials due to its important mechanical and physical properties. For crystalline polyethylene (PE), despite its importance and the studies of available MD simulations and continuum models, the link between molecular and continuum descriptions of its mechanical properties is still not well established. For amorphous polymers, the chain length and temperature effect on their
elastic and elastic-plastic properties has been reported based on the united-atom (UA) and CG MD imulations in our previous work. However, the effect of the CL and temperature on the failure behavior is not understood well yet. Especially, the failure behavior under shear has been scarcely reported in previous work. Therefore, understanding the molecular origins of macroscopic fracture behavior such as fracture energy is a fundamental scientific challenge.
In this thesis, the main contributions can be written as follows: (1) An analytical molecular mechanics model is developed to obtain the size-dependent elastic properties of crystalline PE.
(2) We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials. (3) The tensile and shear failure behavior dependence on chain length and temperature in amorphous polymers are scrutinized using molecular dynamics simulations. Finally, the influence of polymer wrapped two neighbouring SWNTs’ dispersion on their load transfer is investigated by molecular dynamics (MD) simulations, in which the SWNTs' position, the polymer chain length and the temperature on the interaction force is systematically studied.

The nonlinear behavior of concrete can be attributed to the propagation of microcracks within the heterogeneous internal material structure. In this thesis, a mesoscale model is developed which allows for the explicit simulation of these microcracks. Consequently, the actual physical phenomena causing the complex nonlinear macroscopic behavior of concrete can be represented using rather simple material formulations. On the mesoscale, the numerical model explicitly resolves the components of the internal material structure. For concrete, a three-phase model consisting of aggregates, mortar matrix and interfacial transition zone is proposed. Based on prescribed grading curves, an efficient algorithm for the generation of three-dimensional aggregate distributions using ellipsoids is presented. In the numerical model, tensile failure of the mortar matrix is described using a continuum damage approach. In order to reduce spurious mesh sensitivities, introduced by the softening behavior of the matrix material, nonlocal integral-type material formulations are applied. The propagation of cracks at the interface between aggregates and mortar matrix is represented in a discrete way using a cohesive crack approach. The iterative solution procedure is stabilized using a new path following constraint within the framework of load-displacement-constraint methods which allows for an efficient representation of snap-back phenomena. In several examples, the influence of the randomly generated heterogeneous material structure on the stochastic scatter of the results is analyzed. Furthermore, the ability of mesoscale models to represent size effects is investigated. Mesoscale simulations require the discretization of the internal material structure. Compared to simulations on the macroscale, the numerical effort and the memory demand increases dramatically. Due to the complexity of the numerical model, mesoscale simulations are, in general, limited to small specimens. In this thesis, an adaptive heterogeneous multiscale approach is presented which allows for the incorporation of mesoscale models within nonlinear simulations of concrete structures. In heterogeneous multiscale models, only critical regions, i.e. regions in which damage develops, are resolved on the mesoscale, whereas undamaged or sparsely damage regions are modeled on the macroscale. A crucial point in simulations with heterogeneous multiscale models is the coupling of sub-domains discretized on different length scales. The sub-domains differ not only in the size of the finite elements but also in the constitutive description. In this thesis, different methods for the coupling of non-matching discretizations - constraint equations, the mortar method and the arlequin method - are investigated and the application to heterogeneous multiscale models is presented. Another important point is the detection of critical regions. An adaptive solution procedure allowing the transfer of macroscale sub-domains to the mesoscale is proposed. In this context, several indicators which trigger the model adaptation are introduced. Finally, the application of the proposed adaptive heterogeneous multiscale approach in nonlinear simulations of concrete structures is presented.

From a macroscopic point of view, failure within concrete structures is characterized by the initiation and propagation of cracks. In the first part of the thesis, a methodology for macroscopic crack growth simulations for concrete structures using a cohesive discrete crack approach based on the extended finite element method is introduced. Particular attention is turned to the investigation of criteria for crack initiation and crack growth. A drawback of the macroscopic simulation is that the real physical phenomena leading to the nonlinear behavior are only modeled phenomenologically. For concrete, the nonlinear behavior is characterized by the initiation of microcracks which coalesce into macroscopic cracks. In order to obtain a higher resolution of this failure zones, a mesoscale model for concrete is developed that models particles, mortar matrix and the interfacial transition zone (ITZ) explicitly. The essential features are a representation of particles using a prescribed grading curve, a material formulation based on a cohesive approach for the ITZ and a combined model with damage and plasticity for the mortar matrix. Compared to numerical simulations, the response of real structures exhibits a stochastic scatter. This is e.g. due to the intrinsic heterogeneities of the structure. For mesoscale models, these intrinsic heterogeneities are simulated by using a random distribution of particles and by a simulation of spatially variable material parameters using random fields. There are two major problems related to numerical simulations on the mesoscale. First of all, the material parameters for the constitutive description of the materials are often difficult to measure directly. In order to estimate material parameters from macroscopic experiments, a parameter identification procedure based on Bayesian neural networks is developed which is universally applicable to any parameter identification problem in numerical simulations based on experimental results. This approach offers information about the most probable set of material parameters based on experimental data and information about the accuracy of the estimate. Consequently, this approach can be used a priori to determine a set of experiments to be carried out in order to fit the parameters of a numerical model to experimental data. The second problem is the computational effort required for mesoscale simulations of a full macroscopic structure. For this purpose, a coupling between mesoscale and macroscale model is developed. Representative mesoscale simulations are used to train a metamodel that is finally used as a constitutive model in a macroscopic simulation. Special focus is placed on the ability of appropriately simulating unloading.