### Refine

#### Document Type

- Article (963) (remove)

#### Institute

- Professur Theorie und Geschichte der modernen Architektur (393)
- Institut für Strukturmechanik (248)
- Professur Informatik im Bauwesen (129)
- Juniorprofessur Stochastik und Optimierung (40)
- In Zusammenarbeit mit der Bauhaus-Universität Weimar (21)
- Professur Bauphysik (19)
- Professur Informatik in der Architektur (15)
- Juniorprofessur Computational Architecture (11)
- Materialforschungs- und -prüfanstalt an der Bauhaus-Universität (9)
- Professur Bauchemie und Polymere Werkstoffe (9)

#### Keywords

- Bauhaus-Kolloquium (395)
- Weimar (395)
- Angewandte Mathematik (186)
- Strukturmechanik (185)
- Architektur (166)
- 1986 (63)
- 1989 (60)
- Design (59)
- Bauhaus (55)
- Raum (55)

In this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energetic efficiency was investigated. Flat cell and batch reactor showed almost similar substance specific degradation behavior. Within the immersion rotary body reactor, benzotriazole and methylbenzotriazole showed a significantly lower degradation affinity. The flat cell reactor achieved the highest mean degradation rate, with half time values ranging from 5 to 64 min with a mean of 18 min, due to its high catalysts surface to hydraulic volume ratio. The EE/O values were calculated for all micro-pollutants as well as the mean degradation rate constant of each experimental step. The lowest substance specific energy per order (EE/O) values of 5 kWh/m3 were measured for benzotriazole within the batch reactor. The batch reactor also reached the lowest mean values (11.8–15.9 kWh/m3) followed by the flat cell reactor (21.0–37.0 kWh/m3) and immersion rotary body reactor (23.9–41.0 kWh/m3). Catalyst arrangement and irradiation power were identified as major influences on the energetic performance of the reactors. Low radiation intensities as well as the use of submerged catalyst arrangement allowed a reduction in energy demand by a factor of 3–4. A treatment according to existing treatment goals of wastewater treatment plants (80% total degradation) was achieved using the batch reactor with a calculated energy demand of 7000 Wh/m3.

One of the most important renewable energy technologies used nowadays are wind power turbines. In this paper, we are interested in identifying the operating status of wind turbines, especially rotor blades, by means of multiphysical models. It is a state-of-the-art technology to test mechanical structures with ultrasonic-based methods. However, due to the density and the required high resolution, the testing is performed with high-frequency waves, which cannot penetrate the structure in depth. Therefore, there is a need to adopt techniques in the fields of multiphysical model-based inversion schemes or data-driven structural health monitoring. Before investing effort in the development of such approaches, further insights and approaches are necessary to make the techniques applicable to structures such as wind power plants (blades). Among the expected developments, further accelerations of the so-called “forward codes” for a more efficient implementation of the wave equation could be envisaged. Here, we employ electromagnetic waves for the early detection of cracks. Because in many practical situations, it is not possible to apply techniques from tomography (characterized by multiple sources and sensor pairs), we focus here on the question of whether the existence of cracks can be determined by using only one source for the sent waves.

Object-Oriented Damage Information Modeling Concepts and Implementation for Bridge Inspection
(2022)

Bridges are designed to last for more than 50 years and consume up to 50% of their life-cycle costs during their operation phase. Several inspections and assessment actions are executed during this period. Bridge and damage information must be gathered, digitized, and exchanged between different stakeholders. Currently, the inspection and assessment practices rely on paper-based data collection and exchange, which is time-consuming and error-prone, and leads to loss of information. Storing and exchanging damage and building information in a digital format may lower costs and errors during inspection and assessment and support future needs, for example, immediate simulations regarding performance assessment, automated maintenance planning, and mixed reality inspections. This study focused on the concept for modeling damage information to support bridge reviews and structural analysis. Starting from the definition of multiple use cases and related requirements, the data model for damage information is defined independently from the subsequent implementation. In the next step, the implementation via an established standard is explained. Functional tests aim to identify problems in the concept and implementation. To show the capability of the final model, two example use cases are illustrated: the inspection review of the entire bridge and a finite-element analysis of a single component. Main results are the definition of necessary damage data, an object-oriented damage model, which supports multiple use cases, and the implementation of the model in a standard. Furthermore, the tests have shown that the standard is suitable to deliver damage information; however, several software programs lack proper implementation of the standard.

Quantification of cracks in concrete thin sections considering current methods of image analysis
(2022)

Image analysis is used in this work to quantify cracks in concrete thin sections via modern image processing. Thin sections were impregnated with a yellow epoxy resin, to increase the contrast between voids and other phases of the concrete. By the means of different steps of pre-processing, machine learning and python scripts, cracks can be quantified in an area of up to 40 cm2. As a result, the crack area, lengths and widths were estimated automatically within a single workflow. Crack patterns caused by freeze-thaw damages were investigated. To compare the inner degradation of the investigated thin sections, the crack density was used. Cracks in the thin sections were measured manually in two different ways for validation of the automatic determined results. On the one hand, the presented work shows that the width of cracks can be determined pixelwise, thus providing the plot of a width distribution. On the other hand, the automatically measured crack length differs in comparison to the manually measured ones.

In this work, we present a deep collocation method (DCM) for three-dimensional potential problems in non-homogeneous media. This approach utilizes a physics-informed neural network with material transfer learning reducing the solution of the non-homogeneous partial differential equations to an optimization problem. We tested different configurations of the physics-informed neural network including smooth activation functions, sampling methods for collocation points generation and combined optimizers. A material transfer learning technique is utilized for non-homogeneous media with different material gradations and parameters, which enhance the generality and robustness of the proposed method. In order to identify the most influential parameters of the network configuration, we carried out a global sensitivity analysis. Finally, we provide a convergence proof of our DCM. The approach is validated through several benchmark problems, also testing different material variations.

In machine learning, if the training data is independently and identically distributed as the test data then a trained model can make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof of concept, we illustrate the performance of our proposed model on several benchmark problems.

This article focuses on further developments of the background-oriented schlieren (BOS) technique to visualize convective indoor air flow, which is usually defined by very small density gradients. Since the light rays deflect when passing through fluids with different densities, BOS can detect the resulting refractive index gradients as integration along a line of sight. In this paper, the BOS technique is used to yield a two-dimensional visualization of small density gradients. The novelty of the described method is the implementation of a highly sensitive BOS setup to visualize the ascending thermal plume from a heated thermal manikin with temperature differences of minimum 1 K. To guarantee steady boundary conditions, the thermal manikin was seated in a climate laboratory. For the experimental investigations, a high-resolution DLSR camera was used capturing a large field of view with sufficient detail accuracy. Several parameters such as various backgrounds, focal lengths, room air temperatures, and distances between the object of investigation, camera, and structured background were tested to find the most suitable parameters to visualize convective indoor air flow. Besides these measurements, this paper presents the analyzing method using cross-correlation algorithms and finally the results of visualizing the convective indoor air flow with BOS. The highly sensitive BOS setup presented in this article complements the commonly used invasive methods that highly influence weak air flows.

The fracture of microcapsules is an important issue to release the healing agent for healing the cracks in encapsulation-based self-healing concrete. The capsular clustering generated from the concrete mixing process is considered one of the critical factors in the fracture mechanism. Since there is a lack of studies in the literature regarding this issue, the design of self-healing concrete cannot be made without an appropriate modelling strategy. In this paper, the effects of microcapsule size and clustering on the fractured microcapsules are studied computationally. A simple 2D computational modelling approach is developed based on the eXtended Finite Element Method (XFEM) and cohesive surface technique. The proposed model shows that the microcapsule size and clustering have significant roles in governing the load-carrying capacity and the crack propagation pattern and determines whether the microcapsule will be fractured or debonded from the concrete matrix. The higher the microcapsule circumferential contact length, the higher the load-carrying capacity. When it is lower than 25% of the microcapsule circumference, it will result in a greater possibility for the debonding of the microcapsule from the concrete. The greater the core/shell ratio (smaller shell thickness), the greater the likelihood of microcapsules being fractured.

Operator Calculus Approach to Comparison of Elasticity Models for Modelling of Masonry Structures
(2022)

The solution of any engineering problem starts with a modelling process aimed at formulating a mathematical model, which must describe the problem under consideration with sufficient precision. Because of heterogeneity of modern engineering applications, mathematical modelling scatters nowadays from incredibly precise micro- and even nano-modelling of materials to macro-modelling, which is more appropriate for practical engineering computations. In the field of masonry structures, a macro-model of the material can be constructed based on various elasticity theories, such as classical elasticity, micropolar elasticity and Cosserat elasticity. Evidently, a different macro-behaviour is expected depending on the specific theory used in the background. Although there have been several theoretical studies of different elasticity theories in recent years, there is still a lack of understanding of how modelling assumptions of different elasticity theories influence the modelling results of masonry structures. Therefore, a rigorous approach to comparison of different three-dimensional elasticity models based on quaternionic operator calculus is proposed in this paper. In this way, three elasticity models are described and spatial boundary value problems for these models are discussed. In particular, explicit representation formulae for their solutions are constructed. After that, by using these representation formulae, explicit estimates for the solutions obtained by different elasticity theories are obtained. Finally, several numerical examples are presented, which indicate a practical difference in the solutions.

Multi-criteria decision analysis (MCDA) is an established methodology to support the decision-making of multi-objective problems. For conducting an MCDA, in most cases, a set of objectives (SOO) is required, which consists of a hierarchical structure comprised of objectives, criteria, and indicators. The development of an SOO is usually based on moderated development processes requiring high organizational and cognitive effort from all stakeholders involved. This article proposes elementary interactions as a key paradigm of an algorithm-driven development process for an SOO that requires little moderation efforts. Elementary interactions are self-contained information requests that may be answered with little cognitive effort. The pairwise comparison of elements in the well-known analytical hierarchical process (AHP) is an example of an elementary interaction. Each elementary interaction in the development process presented contributes to the stepwise development of an SOO. Based on the hypothesis that an SOO may be developed exclusively using elementary interactions (EIs), a concept for a multi-user platform is proposed. Essential components of the platform are a Model Aggregator, an Elementary Interaction Stream Generator, a Participant Manager, and a Discussion Forum. While the latter component serves the professional exchange of the participants, the first three components are intended to be automatable by algorithms. The platform concept proposed has been evaluated partly in an explorative validation study demonstrating the general functionality of the algorithms outlined. In summary, the platform concept suggested demonstrates the potential to ease SOO development processes as the platform concept does not restrict the application domain; it is intended to work with little administration moderation efforts, and it supports the further development of an existing SOO in the event of changes in external conditions. The algorithm-driven development of SOOs proposed in this article may ease the development of MCDA applications and, thus, may have a positive effect on the spread of MCDA applications.