• search hit 2 of 2
Back to Result List

Thermodynamische Modellierung eines Aufwindkraftwerkes

Thermodynamical modelling of an upwind power plant

  • Die Energieversorgung auf der Erde wird zukünftig zu einem Problem. Bedingt ist dies durch eine fortschreitende Verknappung der natürlichen Ressourcen, wie Kohle, Gas und Öl sowie einer Zunahme der CO2-Konzentration und anderer Schadstoffe in der Atmosphäre. Regenerative Energiequellen müssen genutzt werden, um den steigenden Energiebedarf zu sichern. Eine interessante Möglichkeit zur Nutzung derDie Energieversorgung auf der Erde wird zukünftig zu einem Problem. Bedingt ist dies durch eine fortschreitende Verknappung der natürlichen Ressourcen, wie Kohle, Gas und Öl sowie einer Zunahme der CO2-Konzentration und anderer Schadstoffe in der Atmosphäre. Regenerative Energiequellen müssen genutzt werden, um den steigenden Energiebedarf zu sichern. Eine interessante Möglichkeit zur Nutzung der Solarenergie stellt das Aufwindkraftwerk dar. Das Aufwindkraftwerk besteht aus einem Kamin, um den ein Glasdachkollektor auf dem Erdboden angeordnet ist. Am Fuße des Kamins befinden sich Turbinen und Generatoren. Die einfallende Solarenergie wird hauptsächlich über die Wechselwirkung mit dem Erdreich in thermische Energie, in kinetische Energie, in Rotationsenergie und in elektrische Energie umgewandelt. Das Ziel der Arbeit bestand in der physikalisch-mathematischen Modellierung, der genaueren Erkennung des Wirkprinzips und der Diskussion der Anlagenparameter Leistung und Wirkungsgrad. Im Rahmen dieser Aufgabe wurden dazu stationäre und instationäre Computational Fluid Dynamic (CFD) Modelle und stationäre und instationäre vereinfachte Modelle entwickelt, diskutiert und miteinander verglichen. Grundlegend neue Erkenntnisse wurden bei den Verläufen der Temperaturen im Kollektor, insbesondere der Erdoberflächentemperatur erreicht. Parameteranpassungen im Wärmeübergangsmodell und Widerstandsmodell führten für vier ausgewählte, stationäre Sonnenenergien auf eine gute Übereinstimmung zwischen den Ergebnissen (Temperaturhub, Druckentnahme, Leistung und Wirkungsgrad) des stationären, hybriden Modells und des stationären CFD-Modells. Weiterhin stimmen die lokalen Größen Wärmeübergangskoeffizient, Erdoberflächentemperatur, Lufttemperatur und Glasdachtemperatur gut zwischen den Modellen überein. Mit dem CFD Modell wurden der Prototyp und 3 Großkraftwerke berechnet. Mit dem entwickelten instationären FDM-Modell wurden erstmalig numerische Langzeitsimulationen (1 Jahr) durchgeführt. Zur Überprüfung des Modells wurden die Ergebnisse mit Messwerten aus Manzanares verglichen, wobei eine gute Übereinstimmung erreicht werden konnte. Das Verständnis für die stattfindenden thermodynamischen und strömungsmechanischen Prozesse in einem Aufwindkraftwerk konnte durch die Arbeit maßgeblich verbessert werden.show moreshow less
  • The energy supply on our earth will become a problem in future. This is conditional by a shortage of the natural source, like coal, gas and oil, as well as an increase in the concentration of gasous CO2 in the atmosphere. Regenerative energy sources must be used more increasingly to saveguard the increasing energy consumption. Upwind power plants represent an interesting possibility for the use ofThe energy supply on our earth will become a problem in future. This is conditional by a shortage of the natural source, like coal, gas and oil, as well as an increase in the concentration of gasous CO2 in the atmosphere. Regenerative energy sources must be used more increasingly to saveguard the increasing energy consumption. Upwind power plants represent an interesting possibility for the use of solar energy. The upwind power plant consist of an collector, an chimney and one ore several turbines. The collector heats the air by the interaction with the ground. The glass reflects the infrared radiation of the ground. The Chimney provides a large density difference between the collector exit and the atmosphere. The goal of this work was the mathematical und physical modelling of the thermodynamics in and around an upwind power plant. Steady and unsteady CFD models and steady and unsteady simplified models were developed and compared. Basically new knowledge was reached at the courses of the temperatures in the collector. A very good agreement between the results of the steady hybrid model and the steady CFD model (temperature difference of the collector, pressure at the turbine, power and degree of effectiveness) could be found for four solar energies. Furthermore, the local values of heat-transfer coefficient, soil temperature, temperature of the fluid and the temperature of the glass roof compare very well beetwen the models. The prototyp manzanares and three large power plants were solved with the developed CFD model. Numeric long time simulations (1 year) were carried out for the first time with the developed unsteady Finite-Difference-Model. The model was compared with results of the project Manzanares. A good agreement was found. The knowledge of the thermodynamical und fluid dynamical processes in an upwind power plant were improved substantial by this work.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Doctoral Thesis
Author: Henry Pastohr
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.81Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20040803-867Cite-Link
Advisor:Prof. Dr. rer. nat. Oliver KornadtGND
Language:German
Date of Publication (online):2004/08/03
Year of first Publication:2004
Date of final exam:2004/07/14
Release Date:2004/08/03
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes and partner institutions:Fakultät Bauingenieurwesen / Professur Bauphysik
Tag:CFD; mathematical modelling; solar energy; thermodynamics; upwind power plant
GND Keyword:Aufwindkraftwerk; Numerische Strömungsmechanik; Mathematisches Modell; Thermodynamik; Sonnenenergie; Sonnenkollektor
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:52 Maschinenbau, Energietechnik, Fertigungstechnik / 52.52 Thermische Energieerzeugung, Wärmetechnik
52 Maschinenbau, Energietechnik, Fertigungstechnik / 52.56 Regenerative Energieformen, alternative Energieformen
52 Maschinenbau, Energietechnik, Fertigungstechnik / 52.57 Energiespeicherung
Licence (German):License Logo In Copyright