The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 10
Back to Result List

Goal-oriented A Posteriori Error Estimation and Adaptive Mesh Refinement in 2D/3D Thermoelasticity Problems

Zielorientierte a posteriori Fehlerabschätzung und adaptive Netzverfeinerung bei 2D- und 3Dthermoelastischen Problemen

  • In recent years, substantial attention has been devoted to thermoelastic multifield problems and their numerical analysis. Thermoelasticity is one of the important categories of multifield problems which deals with the effect of mechanical and thermal disturbances on an elastic body. In other words, thermoelasticity encompasses the phenomena that describe the elastic and thermal behavior of solidsIn recent years, substantial attention has been devoted to thermoelastic multifield problems and their numerical analysis. Thermoelasticity is one of the important categories of multifield problems which deals with the effect of mechanical and thermal disturbances on an elastic body. In other words, thermoelasticity encompasses the phenomena that describe the elastic and thermal behavior of solids and their interactions under thermo-mechanical loadings. Since providing an analytical solution for general coupled thermoelasticity problems is mathematically complicated, the development of alternative numerical solution techniques seems essential. Due to the nature of numerical analysis methods, presence of error in results is inevitable, therefore in any numerical simulation, the main concern is the accuracy of the approximation. There are different error estimation (EE) methods to assess the overall quality of numerical approximation. In many real-life numerical simulations, not only the overall error, but also the local error or error in a particular quantity of interest is of main interest. The error estimation techniques which are developed to evaluate the error in the quantity of interest are known as “goal-oriented” error estimation (GOEE) methods. This project, for the first time, investigates the classical a posteriori error estimation and goal-oriented a posteriori error estimation in 2D/3D thermoelasticity problems. Generally, the a posteriori error estimation techniques can be categorized into two major branches of recovery-based and residual-based error estimators. In this research, application of both recovery- and residual-based error estimators in thermoelasticity are studied. Moreover, in order to reduce the error in the quantity of interest efficiently and optimally in 2D and 3D thermoelastic problems, goal-oriented adaptive mesh refinement is performed. As the first application category, the error estimation in classical Thermoelasticity (CTE) is investigated. In the first step, a rh-adaptive thermo-mechanical formulation based on goal-oriented error estimation is proposed.The developed goal-oriented error estimation relies on different stress recovery techniques, i.e., the superconvergent patch recovery (SPR), L2-projection patch recovery (L2-PR), and weighted superconvergent patch recovery (WSPR). Moreover, a new adaptive refinement strategy (ARS) is presented that minimizes the error in a quantity of interest and refines the discretization such that the error is equally distributed in the refined mesh. The method is validated by numerous numerical examples where an analytical solution or reference solution is available. After investigating error estimation in classical thermoelasticity and evaluating the quality of presented error estimators, we extended the application of the developed goal-oriented error estimation and the associated adaptive refinement technique to the classical fully coupled dynamic thermoelasticity. In this part, we present an adaptive method for coupled dynamic thermoelasticity problems based on goal-oriented error estimation. We use dimensionless variables in the finite element formulation and for the time integration we employ the acceleration-based Newmark-_ method. In this part, the SPR, L2-PR, and WSPR recovery methods are exploited to estimate the error in the quantity of interest (QoI). By using adaptive refinement in space, the error in the quantity of interest is minimized. Therefore, the discretization is refined such that the error is equally distributed in the refined mesh. We demonstrate the efficiency of this method by numerous numerical examples. After studying the recovery-based error estimators, we investigated the residual-based error estimation in thermoelasticity. In the last part of this research, we present a 3D adaptive method for thermoelastic problems based on goal-oriented error estimation where the error is measured with respect to a pointwise quantity of interest. We developed a method for a posteriori error estimation and mesh adaptation based on dual weighted residual (DWR) method relying on the duality principles and consisting of an adjoint problem solution. Here, we consider the application of the derived estimator and mesh refinement to two-/three-dimensional (2D/3D) thermo-mechanical multifield problems. In this study, the goal is considered to be given by singular pointwise functions, such as the point value or point value derivative at a specific point of interest (PoI). An adaptive algorithm has been adopted to refine the mesh to minimize the goal in the quantity of interest. The mesh adaptivity procedure based on the DWR method is performed by adaptive local h-refinement/coarsening with allowed hanging nodes. According to the proposed DWR method, the error contribution of each element is evaluated. In the refinement process, the contribution of each element to the goal error is considered as the mesh refinement criterion. In this study, we substantiate the accuracy and performance of this method by several numerical examples with available analytical solutions. Here, 2D and 3D problems under thermo-mechanical loadings are considered as benchmark problems. To show how accurately the derived estimator captures the exact error in the evaluation of the pointwise quantity of interest, in all examples, considering the analytical solutions, the goal error effectivity index as a standard measure of the quality of an estimator is calculated. Moreover, in order to demonstrate the efficiency of the proposed method and show the optimal behavior of the employed refinement method, the results of different conventional error estimators and refinement techniques (e.g., global uniform refinement, Kelly, and weighted Kelly techniques) are used for comparison.show moreshow less
  • Einleitung und Motivation: 1- Im Laufe der letzten Jahrzehnte wurde den Mehrfeldproblemen und ihrer numerischen Analyse große Aufmerksamkeit gewidmet. Bei Mehrfeldproblemen wird die Wechselwirkung zwischen verschiedenen Feldern wie elastischen, elektrischen, magnetischen, chemischen oder thermischen Feldern untersucht. Eine wichtige Kategorie von Mehrfeldproblemen ist die Thermoelastizität. InEinleitung und Motivation: 1- Im Laufe der letzten Jahrzehnte wurde den Mehrfeldproblemen und ihrer numerischen Analyse große Aufmerksamkeit gewidmet. Bei Mehrfeldproblemen wird die Wechselwirkung zwischen verschiedenen Feldern wie elastischen, elektrischen, magnetischen, chemischen oder thermischen Feldern untersucht. Eine wichtige Kategorie von Mehrfeldproblemen ist die Thermoelastizität. In der Thermoelastizität werden neben dem mechanischen Feld (Verschiebungen) auch das thermische Feld (Temperatur) und deren Auswirkungen aufeinander untersucht. 2- In fortgeschrittenen und sensible Anwendungen mit Temperaturänderung (z. B. LNG-, CNG- oder LPG-Speichertanks bei Sonnentemperatur im Sommer) ist die Elastizitätstheorie, die nur Verschiebungen berücksichtigt, nicht ausreichend. In diesen Fällen ist die Verwendung einer thermoelastischen Formulierung unumgänglich, um zuverlässige Ergebnisse zu erzielen. 3- Da eine analytische Lösung für thermoelastische Probleme sehr selten bestimmbar ist, wird sie durch numerische Methoden ersetzt. Allerdings sind die numerischen Ergebnisse nicht exakt und approximieren nur die exakte Lösung. Daher sind Fehler in den numerischen Ergebnissen unvermeidlich. 4- In jeder numerischen Simulation ist die Genauigkeit der Approximation das Hauptanliegen. Daher wurden verschiedene Fehlerschätzungstechniken entwickelt, um den Fehler der numerischen Lösung zu schätzen. Die herkömmlichen Fehlerschätzungsmethoden geben nur einen allgemeinen Überblick über die Gesamtgenauigkeit einer Näherungslösung. Bei vielen realen Problemen ist jedoch anstelle der Gesamtgenauigkeit die örtliche Genauigkeit (z. B. die Genauigkeit an einem bestimmten Punkt) von großem Interesse 5- Herkömmliche Fehlerschätzer berechnen Fehler in gewissen Normen. In der Ingenieurpraxis interessieren allerdings Fehler in anderen Zielgrößen, beispielsweise in der Last-Verformungs-Kurve oder in gewissen Spannungs-komponenten und speziellen Positionen. Dafür wurden sog. zielorientierte Fehlerschätzer entwickelt. 6- Die meisten numerischen Methoden unterteilen das Gebiet in kleine Teile (Element/Zelle), um das Problem zu lösen. Die Verwendung sehr feiner Elemente erhöht die Simulationsgenauigkeit, erhöht aber auch die Rechenzeit drastisch. Dieses Problem wird durch adaptive Methoden (AM) gelöst. AM können die Rechenzeit deutlich verringern. Bei adaptiven Methoden spielt die Fehlerschätzung eine Schlüsselrolle. Die Verfeinerung der Diskretisierung wird von einer Fehlerschätzung der Lösung kontrolliert und gesteuert (Elemente mit einem höheren geschätzten Fehler werden zur Verfeinerung/Aufteilung ausgewählt). Problemstellung und Zielsetzung der Arbeit 7- Die thermoelastischen Probleme können in zwei Hauptgruppen eingeteilt werden: Klassische Thermoelastizität (KTE) und klassische gekoppelte Thermoelastizität (KKTE). In jeder Gruppe werden verschiedene thermoelastische Probleme mit verschiedenen Geometrien, und Rand-/Anfangsbedingungen untersucht. In dieser Untersuchung werden die KTE- und KKTE-Probleme numerisch gelöst und alle numerischen Lösungen durch Fehlerschätzung bewertet. 8- In dieser Arbeit werden die Gesamtgenauigkeit der numerischen Lösung durch herkömmliche globale Fehlerschätzverfahren (auch als recovery-basierte Methoden bekannt) und die Genauigkeit der Lösung in bestimmten Punkten durch neue lokale Methoden (z. B. Dual-gewichtete Residuumsmethode oder DWR-Methode) bewertet. 9- Bei den dynamischen thermoelastischen Problemen ändern sich die Problembedin-gungen und anschließend die Lösung mit der Zeit. Daher werden die Fehler in jedem Zeitschritt geschätzt, um die Genauigkeit über die Zeit zu erhalten. 10- In dieser Dissertation wurde eine neue adaptive Gitter-Verfeinerung (AGV)-Technik entwickelt und für thermoelastische Probleme implementiert. Stand der Wissenschaft 11- Da die Thermoelastizität im Vergleich zu anderen mechanischen Bereichen wie der Elastizität nicht so umfangreich untersucht ist, wurden nur sehr begrenzte Untersuchungen durchgeführt, um die numerischen Fehler abzuschätzen und zu kontrollieren. Alle diese Untersuchungen konzentrierten sich auf die konventionellen Techniken, die nur den Gesamtfehler abschätzen können. Um die lokalen Fehler (wie punktweise Fehler oder Fehler an einem bestimmten Punkt) abzuschätzen, ist die Verwendung der zielorientierten Fehlerschätzungstechniken unvermeidlich. Die Implementierung der recovery-basierten zielorientierten Fehlerschätzung in der Thermoelastizität wird vor diesem Projekt nicht untersucht. 12- Viele numerische Analysen der dynamischen thermoelastischen Probleme basieren auf der Laplace-Transformationsmethode. Bei dieser Methode ist es praktisch nicht möglich, den Fehler in jedem Zeitschritt abzuschätzen. Daher wurden bisher die herkömmlichen globalen oder lokalen zielorientierten Fehlerschätzungsverfahren nicht in der dynamischen Thermoelastizität implementiert. 13- Eine der neuesten fortgeschrittenen zielorientierten Fehlerschätzungsmethoden ist die Dual-gewichtete Residuumsmethode (DWR-Methode). Die DWR-Methode, die punktweise Fehler (wie Verschiebungs-, mechanische Spannungs- oder Dehnungsfehler an einem bestimmten Punkt) abschätzen kann, wird bei elastischen Problemen angewendet. Es wurde jedoch kein Versuch unternommen, die DWR-Methode für die thermoelastischen Probleme zu formulieren. 14- In numerischen Simulationen sollte das Gitter verfeinert werden, um den Fehler zu verringern. Viele Verfeinerungstechniken basieren auf den globalen Fehlerschätzern, die versuchen, den Fehler der gesamten Lösung zu reduzieren. Daher sind diese Verfeinerungsmethoden zum reduzieren der lokalen Fehler nicht effizient. Wenn nur die Lösung an bestimmten Punkten interessiert ist und der Fehler dort reduziert werden will, sollten die zielorientierten Verfeinerungsmethoden angewendet werden, die vor dieser Untersuchung nicht in thermoelastischen Problemen entwickelt und implementiert wurden. 15- Die realen Probleme sind in der Regel 3D-Probleme, und die Simulation mit vereinfachten 2D-Fällen zeigt nicht alle Aspekte des Problems. Wie bereits erwähnt, sollten in der numerischen Simulation zur Erhöhung der Genauigkeit Gitterverfeinerungstechniken eingesetzt werden. Die konventionell verfeinerten Gitter, die durch gleichmäßige Aufteilung aller Elemente erreicht werden, erhöhen die Rechenzeit. Diese Simulationszeiterhöhung bei 3D-Problemen ist enorm. Dieses Problem wird durch die Verwendung der intelligenten Verfeinerung anstelle der globalen gleichmäßigen Verfeinerung gelöst. In diesem Projekt wurde erstmals die zielorientierte adaptive Gitterverfeinerung (AGV) bei thermoelastischen 3D-Problemen entwickelt und implementiert. Forschungsmethodik 16- In dieser Arbeit werden die beiden Haupttypen der thermoelastischen Probleme (KTE und KKTE) untersucht. Das System der partiellen Differentialgleichung der Thermoelastizität besteht aus zwei Hauptgleichungen: der herkömmlichen Gleichgewichtsgleichung und der Energiebilanzgleichung. 17- In diesem Projekt wird die Finite-Elemente-Methode (FEM) verwendet, um die Probleme numerisch zu simulieren. 18- Der Computercode zur Lösung von 2D- und 3D-Problemen wurde in den Program-miersprachen MATLAB bzw. C++ entwickelt. Um die Rechenzeit zu verkürzen und die Computerressourcen effizient zu nutzen, wurden Parallelprogrammierungs- und Optimierungsalgorithmen eingesetzt. 19- Nachdem die Probleme numerisch gelöst wurden, wurden zwei verschiedene Arten von globalen und lokalen Fehlerschätzungstechniken implementiert, um den Fehler zu schätzen und die Genauigkeit der Lösung zu messen. Der globale Typ ist die recovery-basierte zielorientierte Fehlerabschätzung, die wiederum in drei Unterkategorien von SPR-, L2-PR- und WSPR-Methoden unterteilt ist. Der lokale Typ ist die dual-gewichtete residuumsbasierte zielorientierte Fehlerabschätzung. Die Formulierung dieser Methoden wurde für thermoelastische Probleme entwickelt. 20- Schließlich wurde nach der Fehlerschätzung die entwickelte AGV-Methode implementiert. Wesentliche Ergebnisse und Schlussfolgerungen 21- In diesem Projekt wurde die Fehlerschätzung der Thermoelastizität in den folgenden drei Schritten untersucht: 1- Recovery-basierte Fehlerschätzung in statischen thermo Problemen (KTE), 2- Recovery-basierte Fehlerabschätzung in dynamischen thermo Problemen (KKTE), 3- Residuumsbasierte Fehlerschätzung in statischen thermo Problemen (KTE), 22- Im ersten Schritt, wurde das recovery-basierte Fehlerschätzverfahren auf mehrere stationäre thermoelastische Probleme angewendet. Einige der untersuchten Probleme verfügen über analytische Lösungen. Der Vergleich der numerischen Ergebnisse mit der analytischen (exakten) Lösung zeigt, dass die WSPR-Methode die genaueste unter den SPR, L2-PR und WSPR Techniken ist. 23- Darüber hinaus schließen wir aus den Ergebnissen des ersten Schritts, dass die zielorientierte Verfeinerung, im Vergleich zur herkömmlichen gleichmäßigen Total-Verfeinerungsmethode, nur ein Drittel der Unbekannten erfordert, um das Problem mit der gleichen Genauigkeit zu lösen. Daher benötigt die zielorientierte Adaptivität im Vergleich zu herkömmlichen Methoden viel weniger Rechenzeit, um die gleiche Genauigkeit zu erreichen. 24- Im zweiten Schritt, sind die Fehlerschätzungstechniken dieselben wie im ersten Schritt, aber die untersuchten Probleme sind dynamisch und nicht statisch. Der Vergleich der numerischen Ergebnisse mit den analytischen Ergebnissen in einem Benchmark-Problem bestätigt die Genauigkeit der verwendeten Methode. 25- Die Ergebnisse des zweiten Schritts zeigen, dass die geschätzten Fehler in allen gekoppelten Problemen niedriger sind als die ähnlichen ungekoppelten. Bei diesen Problemen reduziert die Implementierung der entwickelten adaptiven Methode den Fehler erheblich. 26- Im dritten Schritt wurde das residuumsbasierte Fehlerabschätzungsverfahren auf mehrere thermoelastische Probleme im stationären Zustand angewendet. In allen Beispielen wird die Genauigkeit der Methode durch analytische Lösungen überprüft. Die numerischen Ergebnisse zeigen eine sehr gute Übereinstimmung mit der analytischen Lösung sowohl bei 2D- als auch bei 3D-Problemen. 27- Im dritten Schritt werden die Ergebnisse der DWR-Verfeinerung mit Kelly-, W-Kelly- und gleichmäßigen Total-Verfeinerungstechniken verglichen. Die entwickelte DWR-Methode zeigt im Vergleich zu den anderen Methoden die beste Effizienz. Um beispielsweise die Fehlertoleranz von 10-6 zu erreichen, enthält das DWR-Gitter nur 2% unbekannte Parameter im Vergleich zu einem gleichmäßig verfeinerten Gitter. Die Verwendung des DWR-Verfahrens spart daher erhebliche Rechenzeit und Kosten.show moreshow less

Download full text files

Export metadata

Metadaten
Document Type:Doctoral Thesis
Author: Ehsan RabizadehGND
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20201113-42864Cite-Link
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.4286Cite-Link
Advisor:Prof. Dr.-Ing. Timon RabczukGND
Language:English
Date of Publication (online):2020/11/11
Year of first Publication:2020
Date of final exam:2020/02/06
Release Date:2020/11/13
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes and partner institutions:Fakultät Bauingenieurwesen / Institut für Strukturmechanik
Tag:2D/3D Adaptive Mesh Refinement; Deal ii C++ code; Goal-oriented A Posteriori Error Estimation; Thermoelasticity; recovery-based and residual-based error estimators
GND Keyword:Mesh Refinement; Thermoelastizität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften
BKL-Classification:31 Mathematik
33 Physik
52 Maschinenbau, Energietechnik, Fertigungstechnik / 52.52 Thermische Energieerzeugung, Wärmetechnik
56 Bauwesen
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)