• search hit 3 of 14
Back to Result List

## NONLINEAR ANALYSIS OF COMPOSITE CROSS-SECTIONS WITH PRE-DEFORMATIONS

• An energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS’s integral theorem. The total strain of eachAn energy method based on the LAGRANGE Principle of the minimum of total potential en-ergy is presented to calculate the stresses and strains of composite cross-sections. The stress-strain relation of each partition of the cross-section can be an arbitrary piecewise continuous function. The strain energy is transformed into a line integral by GAUSS’s integral theorem. The total strain of each partition of the cross-section is split into load-dependent strain and pre-strain. Pre-strains have to be taken into account when the cross-section is pre-stressed, retrofit-ted or influenced by shrinkage, temperature etc. The unconstrained minimum problem can be solved for each load combination using standard software. The application of the method presented in the paper is demonstrated by means of examples.  • Volltext Document Type: Conference Proceeding Prof. Dr.-Ing. habil. Erich RaueGND https://doi.org/10.25643/bauhaus-universitaet.2880Cite-Link https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-28804Cite-Link http://euklid.bauing.uni-weimar.de/ikm2009/paper.html 1611-4086 Klaus GürlebeckGND, Carsten KönkeORCiDGND English 2017/03/14 2010/07/14 2017/03/14 Bauhaus-Universität Weimar Bauhaus-Universität Weimar Fakultät Bauingenieurwesen / Institut für Konstruktiven Ingenieurbau 9 Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing Angewandte Informatik; Angewandte Mathematik; Architektur ; Computerunterstütztes Verfahren 000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme 500 Naturwissenschaften und Mathematik / 510 Mathematik 31 Mathematik / 31.80 Angewandte Mathematik 56 Bauwesen / 56.03 Methoden im Bauingenieurwesen Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 18. 2009 Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)