• search hit 2 of 5
Back to Result List

Application of Qualitative Methods to Research of Polyharmonic Oscillations

  • The development of the qualitative methods of investigation of dynamic systems, suggested by the authors, is the effective means for identification of dynamic systems. The results of the extensive investigations of the behaviour of linear dynamic systems and symmetrical system with double well potential under polyharmonic excitation are given in the paper. Phase space of dynamic systems isThe development of the qualitative methods of investigation of dynamic systems, suggested by the authors, is the effective means for identification of dynamic systems. The results of the extensive investigations of the behaviour of linear dynamic systems and symmetrical system with double well potential under polyharmonic excitation are given in the paper. Phase space of dynamic systems is multi-dimensional. Each point of this space is characterized by not less than four co-ordinates. In particular: displacement, velocity, acceleration and time. Real space has three dimensions. It is more convenient for the analysis. We consider the phase space as limited to three dimensions, namely displacement, velocity and acceleration. Another choice of parameters of phase planes is also possible [1, 2]. Phase trajectory on a plane is of the greatest interest. It is known that accelerations of points are more sensitive to deviations of oscillations from harmonic ones. It is connected with the fact that power criteria on it are interpreted most evidently. Besides, dependence is back symmetric relative to axis of the diagram of elastic characteristic. Only the phase trajectories allow establishing a type and a level of non-linearity of a system. The results of the extensive investigations of the dynamic systems behaviour under polyharmonic excitation are given in the paper. The use of the given phase trajectories enables us to determine with a high degree of reliability the following peculiarities: - presence or absence of non-linear character of behaviour of a dynamic system; - type of non-linearity; - type of dynamic process (oscillations of the basic tone, combinative oscillations, chaotic oscillations.). Unlike existing asymptotic and stochastic methods of identification of dynamic systems, the use of the suggested technique is not connected with the use of a significant amount of computing procedures, and also it has a number of advantages at the investigation of complicated oscillations.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Viktorija Volkova, M. I. Kazakevitch
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.368Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-3684Cite-Link
Language:English
Date of Publication (online):2005/01/11
Year of first Publication:2003
Release Date:2005/01/11
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Dynamik; Schwingung; Polyharmonische Funktion
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 16 , 2003 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 16. 2003
Licence (German):License Logo In Copyright