The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 17 of 38
Back to Result List

Numerische und experimentelle Untersuchung von Phasenübergangsmaterialien zur Reduktion hoher sommerlicher Raumtemperaturen

Numerical and experimental investigation on phase change materials to reduce high indoor temperatures during summer

  • Moderne Büroarchitektur mit Räumen in Leichtbauweise und großen transparenten Fassa-denanteilen verschärft im Zusammenwirken mit hohen internen Lasten die Problematik der sommerlichen Überhitzung in Gebäuden. Phasenübergangsmaterialien (PCM: phase change materials) stellen eine interessante Möglichkeit dar, sommerliche Überhitzung in Gebäuden ohne aufwändige Anlagentechnik wie beispielsweiseModerne Büroarchitektur mit Räumen in Leichtbauweise und großen transparenten Fassa-denanteilen verschärft im Zusammenwirken mit hohen internen Lasten die Problematik der sommerlichen Überhitzung in Gebäuden. Phasenübergangsmaterialien (PCM: phase change materials) stellen eine interessante Möglichkeit dar, sommerliche Überhitzung in Gebäuden ohne aufwändige Anlagentechnik wie beispielsweise Klimaanlagen zu reduzieren. Der thermische Komfort in Räumen, die mit einem PCM-Putz ausgestattet sind, kann signifikant erhöht werden. Die Arbeit untersucht Anwendungsmöglichkeiten und Optimierungspotential eines PCM-Putzes auf experimentelle und numerische Weise. Zur Untersuchung des PCM-Putzes wurden materialtechnische und experimentelle sowie numerische und numerisch-analytische Methoden eingesetzt. Die Kenntnis der thermischen Parameter des PCM-Putzes ist unablässig für die Berechnung der möglichen Temperaturreduktionen. Zur Bestimmung der Latentwärme, des qualitativen Schmelz- und Erstarrungsprozesses sowie des Temperaturintervalls, in dem der Phasenübergang stattfindet, wurden Messungen mit einem Differential Scanning Calorimeter (DSC) durchgeführt. Für die experimentelle Untersuchung des PCM-Putzes wurden zwei identische Testräume in Leichtbauweise erstellt. Die Räume wurden im Verifikationsobjekt „Eiermannbau“ des Sonderforschungsbereiches SFB 524 der Bauhaus-Universität Weimar gemessen. Nach der Überprüfung, dass sich beide Räume thermisch gleich verhalten, wurde ein Raum mit dem PCM-Putz und der zweite Raum mit einem vergleichbaren Innenputz ohne PCM verputzt. Thermoelemente zur Temperaturmessung im Bauteil, an der Oberfläche und zur Raumlufttemperaturbestimmung wurden angebracht und mit einer Messwerterfassungsanlage verbunden. Der Verlauf der Außenlufttemperatur und die Globalstrahlung am Standort der Versuchsräume wurden aufgezeichnet, um einen Klimadatensatz zu erstellen. Für die Berechnung der Temperaturverteilung in einem PCM-Bauteil mit kontinuierlichem Phasenübergang existiert keine geschlossene analytische Lösung. Daher wurde ein numerischer Ansatz gewählt, bei dem der Phasenübergang im Temperaturbereich T1 bis T2 mit Hilfe einer temperaturabhängigen Wärmekapazität c(T) innerhalb der erweiterten Fou-rier’schen Wärmeleitungsgleichung dargestellt wird. Die Funktion c(T) wird auf Basis der DSC-Messungen bestimmt. Die Modellierung erfolgte mit einem Finite-Differenzen-Verfahren auf Grundlage der Fourier’schen Wärmeleitungsgleichung. Im Rahmen der Arbeit wurde ein PCM-Modul entwickelt, das in ein Gebäudesimulationsprogramm implementiert wurde. Mit dem neuen Modul lassen sich sowohl die Temperaturverläufe in einem PCM-Bauteil wie auch seine Wechselwirkung mit dem Raumklima darstellen. Eine Validierung des entwickelten PCM-Moduls anhand von zahlreichen experimentellen Daten der Versuchsräume wurde für das PCM-Modul erfolgreich durchgeführt. Sommerliche Überhitzungsstunden können durch PCM in Wand- und Deckenelementen deutlich reduziert werden. Der PCM-Putz eignet sich vor allem für Anwendungen in Leichtbauten wie z.B. moderne Büroräume. In Räumen, in denen bereits eine ausreichende thermische Masse vorhanden ist, ist die Temperaturreduktion durch PCM nur gering. Kann das PCM während der Nachtstunden nicht erstarren, erschöpft sich seine Fähigkeit zur Latentwärmespeicherung. Erhöhte Nachtlüftung führt bei entsprechend niedrigen Außentemperaturen zu höherem Wärmeübergang und kann damit zur besseren Entladung des PCM beitragen. Im Rahmen der Dissertation konnten Aussagen zur idealen Phasenübergangstemperatur in Abhängigkeit des verwendeten Materials und der Schichtdicke getroffen werden. Die Reduktion der Oberflächentemperaturen, die sich bei Einsatz eines PCM-Putzes unter geeigneten Randbedingungen ergibt, beträgt 2.0 - 3.5 K für eine Putzschicht von 1 cm und 3.0 - 5.0 K für eine Putzschicht von 3 cm. Diese Werte wurden sowohl numerisch als auch durch experimentelle Untersuchungen ermittelt. Die Reduktion der Lufttemperaturen aufgrund einer Konditionierung des Raumes mit PCM-Putz beträgt bei geeigneten thermischen Verhältnissen ca. 1.0 - 2.5 K für eine Putzschicht von 1 cm und 2.0 - 3.0 K für eine Putzschicht von 3 cm. Die operative Temperatur als wichtiger Komfortparameter kann durch den Einsatz des PCM-Putzes um bis zu 4 K gesenkt werden. Damit lässt sich mit Hilfe eines PCM-Putzes die thermische Behaglichkeit in einem Raum deutlich erhöhen.show moreshow less
  • Modern office architecture with light-weight constructions, huge transparent facades and high internal heat loads aggravate the problem of overheating in buildings during summer. Phase Change Materials (PCM) are an interesting possibility to reduce overheating of buildings without expensive air-conditioning. The thermal comfort in rooms that are plastered with a PCM-plaster can be significantlyModern office architecture with light-weight constructions, huge transparent facades and high internal heat loads aggravate the problem of overheating in buildings during summer. Phase Change Materials (PCM) are an interesting possibility to reduce overheating of buildings without expensive air-conditioning. The thermal comfort in rooms that are plastered with a PCM-plaster can be significantly increased. The thesis investigates fields of application and the potential for optimisation of a PCM-plaster in experimental and numerical way. For the investigation of the PCM-plaster investigations on the material properties were applied as well as experimental, numerical and analytical methods. The knowledge of the thermal properties of the PCM-plaster is indispensable to calculate the potential temperature reductions. Differential scanning measurements (DSC) were conducted to determine the latent heat of the material, the quality of melting and solidification and the temperature range in which the phase transition occurs. For the experimental investigation of the PCM-plaster two identical test rooms were erected as light-weight constructions. The rooms were monitored in the verification building “Eiermannbau” of the Collaborative Research Center (Sonderforschungsbereich) 524 of Bauhaus-Universität Weimar. After having ensured that both rooms behave thermally identically, one room was plastered with the PCM-plaster and the second one was plastered with a comparable conventional plaster. Thermocouples were added to measure air temperature and the readings went into a data acquisition. The course of ambient temperature and global radiation was measured as well to generate a climate data file. There is no closed analytical solution to calculate the temperature allocation in a PCM-material that shows a continuous phase transition. Therefore a numerical approach was chosen where the phase change process was described using a temperature dependent function of heat capacity c(T) in the temperature range of phase transition T1 to T2. The function c(T) is determined based on DSC-measurements. The numerical modelling was realised by modifying the Fourier equation of heat conduction with a finite difference approach. Within the thesis a PCM module was developed and implemented in a thermal building simulation software. With this new module the temperature allocation in a PCM-construction can be calculated as well as its interaction with the room. The validation of the developed PCM-module based on the readings of the test rooms was successful. Overheating hours during summer can be reduced significantly when using PCM in walls and ceilings. The PCM-plaster is especially useful for light-weight constructions as typical modern office rooms. In rooms where a significant thermal mass can be already found, the effect of PCM is more humble. If the PCM cannot solidify during night time its ability to store heat wears out. An increased ventilation during night time leads to a higher heat transfer if ambient temperatures are low enough and can therefore help the solidification of PCM. The thesis could give advices for the ideal phase change temperature depending on the material and on the layer thickness used. When using a PCM-plaster of 1 cm, surface temperatures can be lowered by 2.0 – 3.5 K under specific boundary conditions. The temperature reduction ranges from 3.0 -5.0 K for a PCM-plaster of 3 cm. These values were found in the numerical investigation as well as in the experiments. The reduction of room temperature due to the use of PCM-plaster was 1.0 – 2.5 K for a 1 cm layer and 2.0 – 3.0 for a 3 cm layer of PCM-plaster. The operative temperature as important comfort parameter was lowered by up to 4 K when using PCM-plaster. The thermal comfort in a room can thus be increased significantly with the investigated material.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Doctoral Thesis
Author: Sabine Hoffmann
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.823Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20070709-8790Cite-Link
Advisor:Prof. Dr. rer. nat. Oliver KornadtGND
Language:German
Date of Publication (online):2007/07/09
Year of first Publication:2006
Date of final exam:2007/02/06
Release Date:2007/07/09
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes:Fakultät Bauingenieurwesen / Professur Bauphysik
Tag:Gebäudesimulation ESP-r; Latentwärmespeicher; PCM-Putz; Phasenübergangsmaterialien; sommerlicher Wärmeschutz
PCM-plaster; latent heat storage; phase change materials; thermal building simulation; thermal protection
GND Keyword:Bauphysik
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:56 Bauwesen / 56.00 Bauwesen: Allgemeines
Licence (German):License Logo In Copyright