• search hit 30 of 2539
Back to Result List

Zur voll-probabilistischen Verallgemeinerung des Kraftgrößenverfahrens

  • Die Versagenswahrscheinlichkeit nach einem Grenzzustand wird gewöhnlich mit dem Integral I der Basisvariablen-Verteilungsdichte über den Versagensbereich bestimmt. Dabei ist eine geschlossene Lösung nur im Spezialfall normalverteilter Basisvariablen bei Linearität der Grenzzustandsgleichung möglich. In anderen Fällen sind verschiedene Näherungsverfahren gebräuchlich, die auf den Momenten derDie Versagenswahrscheinlichkeit nach einem Grenzzustand wird gewöhnlich mit dem Integral I der Basisvariablen-Verteilungsdichte über den Versagensbereich bestimmt. Dabei ist eine geschlossene Lösung nur im Spezialfall normalverteilter Basisvariablen bei Linearität der Grenzzustandsgleichung möglich. In anderen Fällen sind verschiedene Näherungsverfahren gebräuchlich, die auf den Momenten der Basisvariablen und geeignet gewählten Indizes als Sicherheitskenngrößen beruhen. Eine größere Genauigkeit bieten die Zuverlässigkeitstheorien erster bzw. zweiter Ordnung, die ebenfalls von I ausgehen. Im Beitrag wird ein neuartiges Verfahren vorgestellt, dessen Ausgangspunkt nicht I, sondern das Kraftgrößenverfahren als einem Standardalgorithmus des konstruktiven Ingenieurbaus ist. Die Einbeziehung der maßgebenden Zufallsgrößen in die Matrix der Vorzahlen und die Belastungszahlen führt zur Verallgemeinerung des Systems der Elastizitätsgleichungen zum zufälligen System der Elastizitätsgleichungen. Dessen Lösung, die durch den Übergang zu einem deterministischen Ersatzsystem gewonnen wird, liefert die statisch Unbestimmten als Funktionen der im System wirkenden Zufallsgrößen (z.B. E-Modul der Stäbe und Belastung). Da dieser Zusammenhang analytisch vorliegt, kann die Wirkung einzelner Zufallseinflüsse auf die statisch Unbestimmten und die daraus folgenden sicherheitsrelevanten Zustandsgrößen beurteilt werden. Die Dichtefunktion der Grenzzustandsgleichung kann berechnet oder durch Simulation ermittelt werden. Daraus folgt . Nicht normalverteilte Zufallsgrößen werden durch Entwicklung in orthogonale Polynome Gaußscher Zufallsgrößen berücksichtigt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Josef Biehounek, Helmut Grolik
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.572Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-5728Cite-Link
Language:German
Date of Publication (online):2005/04/11
Year of first Publication:2000
Release Date:2005/04/11
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Kraftmethode; Versagen; Wahrscheinlichkeitsrechnung
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 15 , 2000 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 15. 2000
Licence (German):License Logo In Copyright