• search hit 4 of 7
Back to Result List

Several kinds of Stability of efficient Solutions in Vector Trajectorial discrete Optimization Problem

  • This work was partially supported by DAAD, Fundamental Researches Foundation of Belarus and International Soros Science Education Program We consider a vector discrete optimization problem on a system of non- empty subsets (trajectories) of a finite set. The vector criterion of the pro- blem consists partial criterias of the kinds MINSUM, MINMAX and MIN- MIN. The stability of eficient (ParetoThis work was partially supported by DAAD, Fundamental Researches Foundation of Belarus and International Soros Science Education Program We consider a vector discrete optimization problem on a system of non- empty subsets (trajectories) of a finite set. The vector criterion of the pro- blem consists partial criterias of the kinds MINSUM, MINMAX and MIN- MIN. The stability of eficient (Pareto optimal, Slater optimal and Smale op- timal) trajectories to perturbations of vector criterion parameters has been investigated. Suficient and necessary conditions of eficient trajectories local stability have been obtained. Lower evaluations of eficient trajectories sta- bility radii, and formulas in several cases, have been found for the case when l(inf) -norm is defined in the space of vector criterion parameters.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Article
Author: V. A. Emelichev, E. Girlich, D. P. Podkopaev
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.503Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-5030Cite-Link
Language:English
Date of Publication (online):2005/03/11
Year of first Publication:1997
Release Date:2005/03/11
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
Tag:Trajektorie (Mathematik)
GND Keyword:Diskrete Optimierung; Stabilität
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 14 , 1997 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Licence (German):License Logo In Copyright