• search hit 1 of 1
Back to Result List

On the Factorization of the Schrödinger Operator and Its Applications for Studying Some First Order Systems of Mathematical Physics

  • With the aid of factorization of the Schrödinger operator by quaternionic differential operators of first order proposed in recent works by S. Bernstein and K. Gürlebeck we study the system describing forcefree magnetic fields with nonconstant proportionality factor, the static Maxwell system for inhomogeneous media, the Beltrami condition and the Dirac equation with different types of potentialsWith the aid of factorization of the Schrödinger operator by quaternionic differential operators of first order proposed in recent works by S. Bernstein and K. Gürlebeck we study the system describing forcefree magnetic fields with nonconstant proportionality factor, the static Maxwell system for inhomogeneous media, the Beltrami condition and the Dirac equation with different types of potentials depending on one variable. We obtain integral representations for solutions of these systems.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Viktor Kravchenko, Vladislav Kravchenko
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.325Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-3251Cite-Link
Language:English
Date of Publication (online):2005/01/10
Year of first Publication:2003
Release Date:2005/01/10
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Mathematische Physik; Faktor <Algebra>; Hamilton-Operator; Quaternion; Differentialoperator
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 16 , 2003 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 16. 2003
Licence (German):License Logo In Copyright