• search hit 25 of 38
Back to Result List

Optimale Trassenführung: Diskretisierung - Splineapproximation - Variationsmethoden

  • Ausgehend von mathematischen Überlegungen haben wir einfache Modellansätze zur Bearbeitung des folgenden Optimierungsproblems erarbeitet und numerische Tests durchgeführt: Eine Landkarte wird in Quadrate unterteilt, wobei jedes Quadrat mit einem Faktor zu bewerten ist. Dieser Wichtungsfaktor sei klein, wenn das Gebiet problemlos passierbar ist und entsprechend groß, wenn es sich um einAusgehend von mathematischen Überlegungen haben wir einfache Modellansätze zur Bearbeitung des folgenden Optimierungsproblems erarbeitet und numerische Tests durchgeführt: Eine Landkarte wird in Quadrate unterteilt, wobei jedes Quadrat mit einem Faktor zu bewerten ist. Dieser Wichtungsfaktor sei klein, wenn das Gebiet problemlos passierbar ist und entsprechend groß, wenn es sich um ein Naturschutz-gebiet, einen See oder ein schwer befahrbares Gebiet handelt. Gesucht wird nach einer günstigen Verbindung vom Punkt A zum Punkt B, wobei die durch den Wichtungsfaktor gegebenen landschaftlichen Besonderheiten zu berücksichtigen sind. Wir formulieren das Problem zunächst als Variationsproblem. Eine notwendige Bedingung, der die Lösungsfunktion genügen muß, ist die Euler-Lagrangesche Differentialgleichung. Mit Hilfe der Hamiltonschen Funktion ist es möglich, diese Differentialgleichung in kanonischer Form zu schreiben. Durch Vereinfachung des Modelles gelingt es, das System der kanonischen Gleichungen so zu konkretisieren, daß es als Ausgangspunkt für numerische Untersuchungen betrachtet werden kann. Dazu verwandeln wir die ursprüngliche Landschaft in eine >Berglandschaft<, wobei hohe Berge schwer passierbare Gebiete charakterisieren. Das einfachste Modell ist ein einzelner Berg, der mit Hilfe der Dichtefunktion einer zweidimensionalen Normalverteilung erzeugt wird. Zusätzlich haben wir Berechnungen an zwei sich überlagernden Bergen sowie einer Schlucht durchgeführt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Angela Hommel, Matthias Richter
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.309Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-3094Cite-Link
Language:German
Date of Publication (online):2005/01/04
Year of first Publication:2003
Release Date:2005/01/04
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Trassierung; Optimierung; Spline-Approximation; Variationsrechnung
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 16 , 2003 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 16. 2003
Licence (German):License Logo In Copyright