• search hit 77 of 184
Back to Result List

FISCHER DECOMPOSITION FOR DIFFERENCE DIRAC OPERATORS

  • We establish the basis of a discrete function theory starting with a Fischer decomposition for difference Dirac operators. Discrete versions of homogeneous polynomials, Euler and Gamma operators are obtained. As a consequence we obtain a Fischer decomposition for the discrete Laplacian. For the sake of simplicity we consider in the first part only Dirac operators which contain only forward orWe establish the basis of a discrete function theory starting with a Fischer decomposition for difference Dirac operators. Discrete versions of homogeneous polynomials, Euler and Gamma operators are obtained. As a consequence we obtain a Fischer decomposition for the discrete Laplacian. For the sake of simplicity we consider in the first part only Dirac operators which contain only forward or backward finite differences. Of course, these Dirac operators do not factorize the classic discrete Laplacian. Therefore, we will consider a different definition of a difference Dirac operator in the quaternionic case which do factorizes the discrete Laplacian.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Nelson Faustino
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2955Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-29551Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html
Editor: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Language:English
Date of Publication (online):2017/03/24
Date of first Publication:2006/07/14
Release Date:2017/03/27
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:10
GND Keyword:Architektur <Informatik>; CAD; Computerunterstütztes Verfahren
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 17. 2006
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)