• search hit 74 of 2523
Back to Result List

A New Efficient Concept for Elasto-plastic Simulations of Shell Responses

  • For the analysis of arbitrary, by Finite Elements discretized shell structures, an efficient numerical simulation strategy with quadratic convergence including geometrically and physically nonlinear effects will be presented. In the beginning, a Finite-Rotation shell theory allowing constant shear deformations across the shell thickness is given in an isoparametric formulation. The assumed-strain concept enables the derivation of a locking-free finite element. The Layered Approach will be applied to ensure a sufficiently precise prediction of the propagation of plastic zones even throughout the shell thickness. The Riks-Wempner-Wessels global iteration scheme will be enhanced by a Line-Search procedure to ensure the tracing of nonlinear deformation paths with rather great load steps even in the post-peak range. The elastic-plastic material model includes isotropic hardening. A new Operator-Split return algorithm ensures considerably exact solution of the initial-value problem even for greater load steps. The combination with consistently linearized constitutive equations ensures quadratic convergence in a close neighbourhood to the exact solution. Finally, several examples will demonstrate accuracy and numerical efficiency of the developed algorithm.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: U. Montag
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.436Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-4364Cite-Link
Language:English
Date of Publication (online):2005/03/09
Year of first Publication:1997
Release Date:2005/03/09
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Schale; Elastoplastizität; Finite-Elemente-Methode
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 14 , 1997 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 14. 1997
Licence (German):License Logo In Copyright