• search hit 14 of 184
Back to Result List

ALGEBRAICALLY EXTENDED 2D IMAGE REPRESENTATION

  • We present an algebraically extended 2D image representation in this paper. In order to obtain more degrees of freedom, a 2D image is embedded into a certain geometric algebra. Combining methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, the novel 2D image representation can be derived as the monogenic extension of a curvature tensor. The 2D sphericalWe present an algebraically extended 2D image representation in this paper. In order to obtain more degrees of freedom, a 2D image is embedded into a certain geometric algebra. Combining methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, the novel 2D image representation can be derived as the monogenic extension of a curvature tensor. The 2D spherical harmonics are employed as basis functions to construct the algebraically extended 2D image representation. From this representation, the monogenic signal and the monogenic curvature signal for modeling intrinsically one and two dimensional (i1D/i2D) structures are obtained as special cases. Local features of amplitude, phase and orientation can be extracted at the same time in this unique framework. Compared with the related work, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation, which enables phase-based processing in many computer vision tasks.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Di Zang, G. Sommer
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.3039Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170327-30396Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2006/index.php_lang=de&what=papers.html
Editor: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Language:English
Date of Publication (online):2017/03/27
Date of first Publication:2006/07/14
Release Date:2017/03/27
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:10
GND Keyword:Architektur <Informatik>; CAD; Computerunterstütztes Verfahren
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 17. 2006
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)