• search hit 1 of 1
Back to Result List

FUNDAMENTALS OF A WIMAN VALIRON THEORY FOR POLYMONOGENIC FUNCTIONS

  • In this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we onlyIn this paper we present some rudiments of a generalized Wiman-Valiron theory in the context of polymonogenic functions. In particular, we analyze the relations between different notions of growth orders and the Taylor coefficients. Our main intention is to look for generalizations of the Lindel¨of-Pringsheim theorem. In contrast to the classical holomorphic and the monogenic setting we only obtain inequality relations in the polymonogenic setting. This is due to the fact that the Almansi-Fischer decomposition of a polymonogenic function consists of different monogenic component functions where each of them can have a totally different kind of asymptotic growth behavior.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author:Prof. Dr. Rolf Sören Kraußhar, Regina de Almeida
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2810Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-28100Cite-Link
ISSN:1611-4086
Parent Title (English):Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 20 - 22 2015, Bauhaus-University Weimar
Editor: Klaus GürlebeckGND, Tom LahmerORCiDGND
Language:English
Date of Publication (online):2017/03/03
Date of first Publication:2015/08/28
Release Date:2017/03/14
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:6
Tag:Data, information and knowledge modeling in civil engineering; Function theoretic methods and PDE in engineering sciences; Mathematical methods for (robotics and) computer vision; Numerical modeling in engineering; Optimization in engineering applications
GND Keyword:Angewandte Informatik; Angewandte Mathematik; Building Information Modeling; Computerunterstütztes Verfahren
Dewey Decimal Classification:000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 20. 2015
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)